Arid
DOI10.1080/17538947.2023.2243916
Soil erosion assessment by RUSLE model using remote sensing and GIS in an arid zone
Li, Pingheng; Tariq, Aqil; Li, Qingting; Ghaffar, Bushra; Farhan, Muhammad; Jamil, Ahsan; Soufan, Walid; El Sabagh, Ayman; Freeshah, Mohamed
通讯作者Tariq, A
来源期刊INTERNATIONAL JOURNAL OF DIGITAL EARTH
ISSN1753-8947
EISSN1753-8955
出版年2023
卷号16期号:1页码:3105-3124
英文摘要In this research, we used the Revised Universal Soil Loss Equation (RUSLE) and Geographical Information System (GIS) to predict the annual rate of soil loss in the District Chakwal of Pakistan. The parameters of the RUSLE model were estimated using remote sensing data, and the erosion probability zones were determined using GIS. The estimated length slope (LS), crop management (C), rainfall erosivity (R), soil erodibility (K), and support practice (P) range from 0-68,227, 0-66.61%, 0-0.58, 495.99-648.68 MJ/mm.t.ha(-1) .year(-1), 0.15-0.25 MJ/mm.t.ha(-1) .year(-1), and 1 respectively. The results indicate that the estimated total annual potential soil loss of approximately 4,67,064.25 t.ha(-1).year(-1) is comparable with the measured sediment loss of 11,631 t.ha(-1).year(-1) during the water year 2020. The predicted soil erosion rate due to an increase in agricultural area is approximately 164,249.31 t.ha(-1).year(-1). In this study, we also used Landsat imagery to rapidly achieve actual land use classification. Meanwhile, 38.13% of the region was threatened by very high soil erosion, where the quantity of soil erosion ranged from 365487.35 t.ha(-1).year(-1). Integrating GIS and remote sensing with the RUSLE model helped researchers achieve their final objectives. Land-use planners and decision-makers use the result's spatial distribution of soil erosion in District Chakwal for conservation and management planning.
英文关键词RUSLE Landsat land management DEM soil erosion
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001047039500001
WOS关键词SPATIAL-DISTRIBUTION ; LAND-USE ; PREDICTION ; DISTRICT ; CLIMATE ; SYSTEM
WOS类目Geography, Physical ; Remote Sensing
WOS研究方向Physical Geography ; Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/396982
推荐引用方式
GB/T 7714
Li, Pingheng,Tariq, Aqil,Li, Qingting,et al. Soil erosion assessment by RUSLE model using remote sensing and GIS in an arid zone[J],2023,16(1):3105-3124.
APA Li, Pingheng.,Tariq, Aqil.,Li, Qingting.,Ghaffar, Bushra.,Farhan, Muhammad.,...&Freeshah, Mohamed.(2023).Soil erosion assessment by RUSLE model using remote sensing and GIS in an arid zone.INTERNATIONAL JOURNAL OF DIGITAL EARTH,16(1),3105-3124.
MLA Li, Pingheng,et al."Soil erosion assessment by RUSLE model using remote sensing and GIS in an arid zone".INTERNATIONAL JOURNAL OF DIGITAL EARTH 16.1(2023):3105-3124.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Pingheng]的文章
[Tariq, Aqil]的文章
[Li, Qingting]的文章
百度学术
百度学术中相似的文章
[Li, Pingheng]的文章
[Tariq, Aqil]的文章
[Li, Qingting]的文章
必应学术
必应学术中相似的文章
[Li, Pingheng]的文章
[Tariq, Aqil]的文章
[Li, Qingting]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。