Arid
DOI10.1002/joc.8269
Quantification of uncertainties in projections of extreme daily precipitation simulated by CMIP6 GCMs over homogeneous regions of India
Nair, Meera M.; Rajesh, A. Naga; Sahai, A. K.; Kumar, T. V. Lakshmi
通讯作者Rajesh, AN
来源期刊INTERNATIONAL JOURNAL OF CLIMATOLOGY
ISSN0899-8418
EISSN1097-0088
出版年2023
卷号43期号:15页码:7365-7380
英文摘要Global climate model (GCM) projections are subject to significant uncertainties. Quantifying uncertainties in climate change projections improves credibility and makes climate data more reliable. This study aims to quantify the uncertainties in projected extreme precipitation during the 21st century over the homogeneous rainfall regions of India simulated by Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs. The percentile-based square root error variance (SREV) method estimates model, scenario and ensemble uncertainties in projections of extreme precipitation. The uncertainty is investigated at four thresholds: 95th, 99th, 99.9th and 100th percentiles. The results show that the wet northeast region has a greater SREV, which is consistent with previous studies. At 99th and 99.9th percentiles, relative model SREV is dominant over the northeast (NE) region. However, at the 95th percentile high relative model SREV is found over the northwest (NW) region during southwest (June, July, August and September) and NE (October, November and December) monsoon seasons. Model uncertainty is the main source of uncertainty, followed by scenario and ensemble uncertainties. The study indicates that the arid NW region in India has a higher level of uncertainty than other regions with homogeneous rainfall. These findings will assist policymakers in planning infrastructure development in arid regions of India.
英文关键词CMIP6 extreme precipitation global circulation models SREV uncertainty
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001079347600001
WOS关键词TEMPERATURE ; MODEL ; PATTERN ; TRENDS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/396978
推荐引用方式
GB/T 7714
Nair, Meera M.,Rajesh, A. Naga,Sahai, A. K.,et al. Quantification of uncertainties in projections of extreme daily precipitation simulated by CMIP6 GCMs over homogeneous regions of India[J],2023,43(15):7365-7380.
APA Nair, Meera M.,Rajesh, A. Naga,Sahai, A. K.,&Kumar, T. V. Lakshmi.(2023).Quantification of uncertainties in projections of extreme daily precipitation simulated by CMIP6 GCMs over homogeneous regions of India.INTERNATIONAL JOURNAL OF CLIMATOLOGY,43(15),7365-7380.
MLA Nair, Meera M.,et al."Quantification of uncertainties in projections of extreme daily precipitation simulated by CMIP6 GCMs over homogeneous regions of India".INTERNATIONAL JOURNAL OF CLIMATOLOGY 43.15(2023):7365-7380.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nair, Meera M.]的文章
[Rajesh, A. Naga]的文章
[Sahai, A. K.]的文章
百度学术
百度学术中相似的文章
[Nair, Meera M.]的文章
[Rajesh, A. Naga]的文章
[Sahai, A. K.]的文章
必应学术
必应学术中相似的文章
[Nair, Meera M.]的文章
[Rajesh, A. Naga]的文章
[Sahai, A. K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。