Arid
DOI10.1109/JBHI.2023.3306460
Individualized Assessment of Brain Aβ Deposition With fMRI Using Deep Learning
Li, Chaolin; Liu, Mianxin; Xia, Jing; Mei, Lang; Yang, Qing; Shi, Feng; Zhang, Han; Shen, Dinggang
通讯作者Zhang, H ; Shen, DG
来源期刊IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
ISSN2168-2194
EISSN2168-2208
出版年2023
卷号27期号:11页码:5430-5438
英文摘要PET-based Alzheimer's disease (AD) assessment has many limitations in large-scale screening. Non-invasive techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) have been proven valuable in early AD diagnosis. This study investigated feasibility of using rs-fMRI, especially functional connectivity (FC), for individualized assessment of brain amyloid-beta deposition derived from PET. We designed a graph convolutional networks (GCNs) and random forest (RF) based integrated framework for using rs-fMRI-derived multi-level FC networks to predict amyloid-beta PET patterns with the OASIS-3 (N = 258) and ADNI-2 (N = 291) datasets. Our method achieved satisfactory accuracy not only in A beta-PET grade classification (for negative, intermediate, and positive grades, with accuracy in the three-class classification as 62.8% and 64.3% on two datasets, respectively), but also in prediction of whole-brain region-level A beta-PET standard uptake value ratios (SUVRs) (with the mean square errors as 0.039 and 0.074 for two datasets, respectively). Model interpretability examination also revealed the contributive role of the limbic network. This study demonstrated high feasibility and reproducibility of using low-cost, more accessible magnetic resonance imaging (MRI) to approximate PET-based diagnosis.
英文关键词Functional connectivity high-order functional connectivity amyloid beta graph convolutional networks
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001129955100021
WOS关键词STATE FUNCTIONAL CONNECTIVITY ; MILD COGNITIVE IMPAIRMENT ; ALZHEIMERS-DISEASE ; VISUALIZATION ; PATTERNS
WOS类目Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Medical Informatics
WOS研究方向Computer Science ; Mathematical & Computational Biology ; Medical Informatics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/396904
推荐引用方式
GB/T 7714
Li, Chaolin,Liu, Mianxin,Xia, Jing,et al. Individualized Assessment of Brain Aβ Deposition With fMRI Using Deep Learning[J],2023,27(11):5430-5438.
APA Li, Chaolin.,Liu, Mianxin.,Xia, Jing.,Mei, Lang.,Yang, Qing.,...&Shen, Dinggang.(2023).Individualized Assessment of Brain Aβ Deposition With fMRI Using Deep Learning.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,27(11),5430-5438.
MLA Li, Chaolin,et al."Individualized Assessment of Brain Aβ Deposition With fMRI Using Deep Learning".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 27.11(2023):5430-5438.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Chaolin]的文章
[Liu, Mianxin]的文章
[Xia, Jing]的文章
百度学术
百度学术中相似的文章
[Li, Chaolin]的文章
[Liu, Mianxin]的文章
[Xia, Jing]的文章
必应学术
必应学术中相似的文章
[Li, Chaolin]的文章
[Liu, Mianxin]的文章
[Xia, Jing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。