Arid
DOI10.2166/nh.2023.083
Application of advanced machine learning algorithms and geospatial techniques for groundwater potential zone mapping in Gambela Plain, Ethiopia
Seifu, Tesema Kebede; Eshetu, Kidist Demessie; Woldesenbet, Tekalegn Ayele; Alemayehu, Taye; Ayenew, Tenalem
通讯作者Seifu, TK
来源期刊HYDROLOGY RESEARCH
ISSN1998-9563
EISSN2224-7955
出版年2023
卷号54期号:10页码:1246-1266
英文摘要Groundwater availability is one of the key anxieties in most semi-arid regions of Ethiopia. The purpose of this study was to investigate the groundwater potential zone map of the alluvial plain of Gambela. The study applied analytic hierarchy process (AHP) models with four different machine learning algorithms: random forest classifier (RFC), gradient boosting classifier (GBC), decision tree classifier (DTC), and K-neighbor classifier (KNC). The features that are used as predictors include geology, geomorphology, slope, soil, lineament density, drainage density, land use and land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), topographic roughness index (TRI), and rainfall. The final output of the groundwater potential zone was classified as low, moderate, high, and very high potential zones. The authentication through receiver operating curve (ROC) shows 78.2, 93.4, 92.5, 72.4, and 87.7% values of area under the curve (AUC) for AHP, RFC, GBC, DTC, and KNC, respectively. The results show that RFC and GBC are the best GWPZ map estimator. The study also shows that rainfall and geomorphology are the primary factors influencing the GWPZ. The outcome might promote improved management alternatives in other areas of the country with a comparable climate.
英文关键词Gambela Plain groundwater potential machine learning random forest remote sensing ROC
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001071194500001
WOS关键词RANDOM FOREST MODELS ; GIS ; MULTIVARIATE ; RECHARGE
WOS类目Water Resources
WOS研究方向Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/396896
推荐引用方式
GB/T 7714
Seifu, Tesema Kebede,Eshetu, Kidist Demessie,Woldesenbet, Tekalegn Ayele,et al. Application of advanced machine learning algorithms and geospatial techniques for groundwater potential zone mapping in Gambela Plain, Ethiopia[J],2023,54(10):1246-1266.
APA Seifu, Tesema Kebede,Eshetu, Kidist Demessie,Woldesenbet, Tekalegn Ayele,Alemayehu, Taye,&Ayenew, Tenalem.(2023).Application of advanced machine learning algorithms and geospatial techniques for groundwater potential zone mapping in Gambela Plain, Ethiopia.HYDROLOGY RESEARCH,54(10),1246-1266.
MLA Seifu, Tesema Kebede,et al."Application of advanced machine learning algorithms and geospatial techniques for groundwater potential zone mapping in Gambela Plain, Ethiopia".HYDROLOGY RESEARCH 54.10(2023):1246-1266.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Seifu, Tesema Kebede]的文章
[Eshetu, Kidist Demessie]的文章
[Woldesenbet, Tekalegn Ayele]的文章
百度学术
百度学术中相似的文章
[Seifu, Tesema Kebede]的文章
[Eshetu, Kidist Demessie]的文章
[Woldesenbet, Tekalegn Ayele]的文章
必应学术
必应学术中相似的文章
[Seifu, Tesema Kebede]的文章
[Eshetu, Kidist Demessie]的文章
[Woldesenbet, Tekalegn Ayele]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。