Arid
DOI10.1080/10106049.2022.2158951
Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data
Adnan, Rana Muhammad; Dai, Hong-Liang; Mostafa, Reham R.; Islam, Abu Reza Md. Towfiqul; Kisi, Ozgur; Heddam, Salim; Zounemat-Kermani, Mohammad
通讯作者Dai, HL
来源期刊GEOCARTO INTERNATIONAL
ISSN1010-6049
EISSN1752-0762
出版年2023
卷号38期号:1
英文摘要The accurate assessment of groundwater levels is critical to water resource management. With global warming and climate change, its significance has become increasingly evident, particularly in arid and semi-arid areas. This study compares new extreme learning machines (ELM) methods tuned with metaheuristic algorithms such as particle swarm optimization, grey wolf optimization, the whale optimization algorithm (WOA), Harris Hawks optimizer (HHO), and the jellyfish search optimizer (JFO) in groundwater level estimation. Daily precipitation and temperature datasets acquired from two stations in northern Bangladesh were used as inputs to the models, which were evaluated based on different quantitative statistics and assessed based on RMSE, MAE, R-2, and some new graphical inspection methods. The outcomes of the applications revealed that the efficiency of ELM models was considerably improved by using metaheuristic algorithms. The ELM-JSO improved the RMSE of the standalone ELM model by 13% for the optimal precipitation, temperature, and groundwater level inputs in the testing stage. Among the implemented methods, the ELM-JFO performed the best in estimating the daily groundwater level, and the ELM-WOA and ELM-HHO, respectively, followed it. Viability of a new extreme machine learning (ELM) method tuned with Jellyfish search optimizer (JFO) is investigated in groundwater level estimation. The ELM-JFO is compared with hybrid ELM-PSO, ELM-WOA and ELM-HHO models using daily precipitation and temperature data acquired from two stations of Bangladesh. The ELM-JSO improves the root mean square error of the standalone ELM model by 13% for the optimal precipitation, temperature and groundwater level inputs.
英文关键词Groundwater prediction extreme learning machine particle swarm optimization grey wolf optimization whale optimization algorithm Harris Hawks optimizer jellyfish search optimizer
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:000904660800001
WOS关键词EXTREME LEARNING-MACHINE ; ARTIFICIAL NEURAL-NETWORKS ; CHANGE IMPACT ASSESSMENT ; SUPPORT VECTOR MACHINES ; FUZZY INFERENCE SYSTEM ; RISK-ASSESSMENT ; PART II ; PREDICTION ; ENSEMBLE ; SIMULATION
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/396672
推荐引用方式
GB/T 7714
Adnan, Rana Muhammad,Dai, Hong-Liang,Mostafa, Reham R.,et al. Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data[J],2023,38(1).
APA Adnan, Rana Muhammad.,Dai, Hong-Liang.,Mostafa, Reham R..,Islam, Abu Reza Md. Towfiqul.,Kisi, Ozgur.,...&Zounemat-Kermani, Mohammad.(2023).Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data.GEOCARTO INTERNATIONAL,38(1).
MLA Adnan, Rana Muhammad,et al."Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data".GEOCARTO INTERNATIONAL 38.1(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Adnan, Rana Muhammad]的文章
[Dai, Hong-Liang]的文章
[Mostafa, Reham R.]的文章
百度学术
百度学术中相似的文章
[Adnan, Rana Muhammad]的文章
[Dai, Hong-Liang]的文章
[Mostafa, Reham R.]的文章
必应学术
必应学术中相似的文章
[Adnan, Rana Muhammad]的文章
[Dai, Hong-Liang]的文章
[Mostafa, Reham R.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。