Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3389/fpls.2023.1285588 |
Temperature explains intraspecific functional trait variation in Phragmites australis more effectively than soil properties | |
Xu, Zhichao; Liu, Huamin; Wen, Lu; Zhang, Jinghui; Xin, Xiaoyun; Hu, Jinpeng; Kou, Xin; Liu, Dongwei; Zhuo, Yi; Wang, Lixin | |
通讯作者 | Wang, LX |
来源期刊 | FRONTIERS IN PLANT SCIENCE
![]() |
ISSN | 1664-462X |
出版年 | 2023 |
卷号 | 14 |
英文摘要 | Common reed (Phragmites australis) is a widespread grass species that exhibits a high degree of intraspecific variation for functional traits along environmental gradients. However, the mechanisms underlying intraspecific variation and adaptation strategies in response to environmental gradients on a regional scale remain poorly understood. In this study, we measured leaf, stem, and root traits of common reed in the lakeshore wetlands of the arid and semi-arid regions of the Inner Mongolia Plateau aiming to reveal the regional-scale variation for functional traits in this species, and the corresponding potentially influencing factors. Additionally, we aimed to reveal the ecological adaptation strategies of common reed in different regions using the plant economics spectrum (PES) theory. The results showed that functional-trait variation followed significant latitudinal and longitudinal patterns. Furthermore, we found that these variations are primarily driven by temperature-mediated climatic differences, such as aridity, induced by geographical distance. In contrast, soil properties and the combined effects of climate and soil had relatively minor effects on such properties. In the case of common reed, the PES theory applies to the functional traits at the organ, as well as at the whole-plant level, and different ecological adaptation strategies across arid and semi-arid regions were confirmed. The extent of utilization and assimilation of resources by this species in arid regions was a conservative one, whereas in semi-arid regions, an acquisition strategy prevailed. This study provides new insights into intraspecific variations for functional traits in common reed on a regional scale, the driving factors involved, and the ecological adaptation strategies used by the species. Moreover, it provided a theoretical foundation for wetland biodiversity conservation and ecological restoration. |
英文关键词 | functional traits intraspecific variation lakeshore wetland plant economics spectrum Phragmites australis spatial scales |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:001119016800001 |
WOS关键词 | PLANT ECONOMICS SPECTRUM ; COMMUNITY-LEVEL ; LEAF ; CLIMATE ; NUTRIENT ; STOICHIOMETRY ; LEAVES ; ROOT ; ACCUMULATION ; METAANALYSIS |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/396582 |
推荐引用方式 GB/T 7714 | Xu, Zhichao,Liu, Huamin,Wen, Lu,et al. Temperature explains intraspecific functional trait variation in Phragmites australis more effectively than soil properties[J],2023,14. |
APA | Xu, Zhichao.,Liu, Huamin.,Wen, Lu.,Zhang, Jinghui.,Xin, Xiaoyun.,...&Wang, Lixin.(2023).Temperature explains intraspecific functional trait variation in Phragmites australis more effectively than soil properties.FRONTIERS IN PLANT SCIENCE,14. |
MLA | Xu, Zhichao,et al."Temperature explains intraspecific functional trait variation in Phragmites australis more effectively than soil properties".FRONTIERS IN PLANT SCIENCE 14(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。