Arid
DOI10.1080/22797254.2023.2260549
Detecting semi-arid forest decline using time series of Landsat data
Shafeian, Elham; Fassnacht, Fabian Ewald; Latifi, Hooman
通讯作者Shafeian, E
来源期刊EUROPEAN JOURNAL OF REMOTE SENSING
EISSN2279-7254
出版年2023
卷号56期号:1
英文摘要Detecting forest decline is crucial for effective forest management in arid and semi-arid regions. Remote sensing using satellite image time series is useful for identifying reduced photosynthetic activity caused by defoliation. However, current studies face limitations in detecting forest decline in sparse semi-arid forests. In this study, three Landsat time-series-based approaches were used to distinguish non-declining and declining forest patches in the Zagros forests. The random forest was the most accurate approach, followed by anomaly detection and the Sen's slope approach, with an overall accuracy of 0.75 (kappa = 0.50), 0.65 (kappa = 0.30), and 0.64 (kappa = 0.30), respectively. The classification results were unaffected by the Landsat acquisition times, indicating that rather, environmental variables may have contributed to the separation of declining and non-declining areas and not the remotely sensed spectral signal of the trees. We conclude that identifying declining forest patches in semi-arid regions using Landsat data is challenging. This difficulty arises from weak vegetation signals caused by limited canopy cover before a bright soil background, which makes it challenging to detect modest degradation signals. Additional environmental variables may be necessary to compensate for these limitations.
英文关键词forest decline Landsat time series random forest anomaly Sen's slope semi-arid
类型Article
语种英语
开放获取类型Green Submitted, gold
收录类别SCI-E
WOS记录号WOS:001070081700001
WOS关键词CHLOROPHYLL CONTENT ; VEGETATION ; LEAF ; COVER ; DISTURBANCE ; TRENDS ; MODEL ; INDEX ; NDVI
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/396331
推荐引用方式
GB/T 7714
Shafeian, Elham,Fassnacht, Fabian Ewald,Latifi, Hooman. Detecting semi-arid forest decline using time series of Landsat data[J],2023,56(1).
APA Shafeian, Elham,Fassnacht, Fabian Ewald,&Latifi, Hooman.(2023).Detecting semi-arid forest decline using time series of Landsat data.EUROPEAN JOURNAL OF REMOTE SENSING,56(1).
MLA Shafeian, Elham,et al."Detecting semi-arid forest decline using time series of Landsat data".EUROPEAN JOURNAL OF REMOTE SENSING 56.1(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shafeian, Elham]的文章
[Fassnacht, Fabian Ewald]的文章
[Latifi, Hooman]的文章
百度学术
百度学术中相似的文章
[Shafeian, Elham]的文章
[Fassnacht, Fabian Ewald]的文章
[Latifi, Hooman]的文章
必应学术
必应学术中相似的文章
[Shafeian, Elham]的文章
[Fassnacht, Fabian Ewald]的文章
[Latifi, Hooman]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。