Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s10661-022-10675-8 |
Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types | |
Mirzaei, Morad; Anari, Manouchehr Gorji; Saronjic, Nermina; Sarkar, Sudip; Kral, Iris; Gronauer, Andreas; Mohammed, Safwan; Caballero-Calvo, Andres | |
通讯作者 | Mirzaei, M |
来源期刊 | ENVIRONMENTAL MONITORING AND ASSESSMENT
![]() |
ISSN | 0167-6369 |
EISSN | 1573-2959 |
出版年 | 2023 |
卷号 | 195期号:1 |
英文摘要 | The intensification of specific land management operations (tillage, herbicide, etc.) is increasing land degradation and contributing to ecosystem pollution. Mulches can be a sustainable tool to counter these processes. This is particularly relevant for rural areas in low-income countries where agriculture is a vital sector. In this research, the environmental impact of different rates of wheat residues (no residues, 25, 50, 75, and 100%) in corn silage cultivation was evaluated using the life cycle assessment (LCA) method under conventional tillage (CT) and no-tillage (NT) systems in a semi-arid region in Karaj, Iran. Results showed that in both tillage systems, marine aquatic ecotoxicity (ME) and global warming potential (GWP) had the highest levels of pollution among the environmental impact indicators. In CT systems, the minimum (17,730.70 kg 1,4-dichlorobenzene (DB) eq.) and maximum (33,683.97 kg 1,4-DB eq.) amounts of ME were related to 0 and 100% wheat residue rates, respectively. Also, in the CT system, 0 and 100% wheat residue rates resulted in minimum (176.72 kg CO2 eq.) and maximum (324.95 kg CO2 eq.) amounts of GWP, respectively. However, in the NT system, the 100% wheat residue rate showed the minimum amounts of ME (11,442.39 kg 1,4-DB eq.) and GWP (120.21 kg CO2 eq.). Also, in the NT system, maximum amounts of ME (17,174 kg 1,4-DB eq.) and GWP (175.60 kg CO2 eq.) were observed with a zero wheat residue rate. On-farm emissions and nitrogen fertilizers were the two factors with the highest contribution to the degradation related to environmental parameters at all rates of wheat residues. Moreover, in the CT system, the number of environmental pollutants increased with the addition of a higher wheat residue rate, while in the NT system, increasing residue rates decreased the amount of environmental pollutants. In conclusion, this LCA demonstrates that the NT system with the full retention of wheat residues (100%) is a more environmentally sustainable practice for corn silage production. Therefore, it may be considered one of the most adequate management strategies in this region and similar semi-arid conditions. Further long-term research and considering more environmental impact categories are required to assess the real potential of crop residues and tillage management for sustainable corn silage production. |
英文关键词 | Sustainable agriculture Crop residues Life cycle assessment Soil management |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published, hybrid |
收录类别 | SCI-E |
WOS记录号 | WOS:000912844400001 |
WOS关键词 | LIFE-CYCLE ASSESSMENT ; GREENHOUSE-GAS EMISSIONS ; SOIL CARBON SEQUESTRATION ; WINTER-WHEAT ; PRODUCTION SYSTEMS ; NITROUS-OXIDE ; COVER CROPS ; MAIZE PRODUCTION ; CROPPING SYSTEM ; SEMIARID REGION |
WOS类目 | Environmental Sciences |
WOS研究方向 | Environmental Sciences & Ecology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/396164 |
推荐引用方式 GB/T 7714 | Mirzaei, Morad,Anari, Manouchehr Gorji,Saronjic, Nermina,et al. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types[J],2023,195(1). |
APA | Mirzaei, Morad.,Anari, Manouchehr Gorji.,Saronjic, Nermina.,Sarkar, Sudip.,Kral, Iris.,...&Caballero-Calvo, Andres.(2023).Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types.ENVIRONMENTAL MONITORING AND ASSESSMENT,195(1). |
MLA | Mirzaei, Morad,et al."Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types".ENVIRONMENTAL MONITORING AND ASSESSMENT 195.1(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。