Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.eng.2021.12.014 |
Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology | |
Wu, Houfa; Zhang, Jianyun; Bao, Zhenxin; Wang, Guoqing; Wang, Wensheng; Yang, Yanqing; Wang, Jie | |
通讯作者 | Bao, ZX |
来源期刊 | ENGINEERING
![]() |
ISSN | 2095-8099 |
EISSN | 2096-0026 |
出版年 | 2023 |
卷号 | 28页码:93-104 |
英文摘要 | Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments. The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization, which is the most widely used approach. Runoff modeling was studied in 38 catchments located in the Yellow-Huai-Hai River Basin (YHHRB). The values of the Nash-Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2), and percent bias (PBIAS) indicated the acceptable performance of the soil and water assessment tool (SWAT) model in the YHHRB. Nine descriptors belonging to the categories of climate, soil, vegetation, and topography were used to express the catchment characteristics related to the hydrological processes. The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models, including linear regression (LR) equations, support vector regression (SVR), random forest (RF), k-nearest neighbor (kNN), decision tree (DT), and radial basis function (RBF). Each of the 38 catchments was assumed to be an ungauged catchment in turn. Then, the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments. Furthermore, the similaritybased regionalization scheme was used for comparison with the regression-based approach. The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments. Compared with the traditional LR-based approach, the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships. The performances of different approaches were similar in humid regions, while the advantages of the machine learning techniques were more evident in arid regions. When the study area contained nested catchments, the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance. The new findings could improve flood forecasting and water resources planning in regions that lack observed data. (c) 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
英文关键词 | Parameters estimation Ungauged catchments Regionalization scheme Machine learning algorithms Soil and water assessment tool model |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:001138790500001 |
WOS关键词 | SWAT MODEL ; RIVER-BASIN ; FLOW ; PREDICTIONS ; CALIBRATION ; SIMULATION ; STREAMFLOW ; CHINA |
WOS类目 | Engineering, Multidisciplinary |
WOS研究方向 | Engineering |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/396078 |
推荐引用方式 GB/T 7714 | Wu, Houfa,Zhang, Jianyun,Bao, Zhenxin,et al. Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology[J],2023,28:93-104. |
APA | Wu, Houfa.,Zhang, Jianyun.,Bao, Zhenxin.,Wang, Guoqing.,Wang, Wensheng.,...&Wang, Jie.(2023).Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology.ENGINEERING,28,93-104. |
MLA | Wu, Houfa,et al."Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology".ENGINEERING 28(2023):93-104. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。