Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s10646-023-02653-8 |
Individual variation within wild populations of an arid-zone lizard dictates oxidative stress levels despite exposure to sublethal pesticides | |
Contador-Kelsall, Isabella; Maute, Kimberly; de Beer, Maxwell; French, Kristine | |
通讯作者 | Contador-Kelsall, I |
来源期刊 | ECOTOXICOLOGY
![]() |
ISSN | 0963-9292 |
EISSN | 1573-3017 |
出版年 | 2023 |
卷号 | 32期号:4页码:470-486 |
英文摘要 | The relationship between sublethal pesticide exposure and oxidative stress in an ecologically relevant field setting is relatively unknown for reptiles. Oxidative stress is a multi-faceted concept that dictates key survival and fitness parameters in any organism. Fipronil and fenitrothion are two pesticides widely used globally for agricultural pest management. Using a field-based, BACI designed experiment we investigated the impact of sublethal pesticide exposure on oxidative stress biomarkers protein carbonyl and DNA damage (8-OHdG), in an arid-zone lizard species, Pogona vitticeps. A single ecologically relevant dose of pesticide was applied via oral gavage to treatment animals. Lizard condition, activity measures, and blood biomarkers were measured at relevant sampling intervals. Cholinesterase (ChE) and acetylcholinesterase (AChE) enzymatic biomarkers were measured in response to fenitrothion, and fipronil blood residues were measured for fipronil-treated lizards. Results suggested no significant treatment effect of either pesticide on parameters measured, however, 8-OHdG levels decreased by >= 45% for both pesticide treatment groups and not controls. Protein carbonyl levels showed a high degree of individual variation that proved more influential than pesticide exposure. Building our understanding of the macromolecular impacts of sublethal pesticide exposure on wild lizard populations is an integral step in addressing the current gap in literature and management practices. Our study has also highlighted the complex nature of studying oxidative stress in the field and the sheer necessity of future study. |
英文关键词 | Arid-zone DNA damage Lizard Oxidative stress Pesticide Protein carbonyl |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published, hybrid |
收录类别 | SCI-E |
WOS记录号 | WOS:000983703700001 |
WOS关键词 | PROTEIN OXIDATION ; HOUSE SPARROW ; FREE-RADICALS ; TOXICITY ; INSECTICIDE ; FIPRONIL ; REPTILES ; DAMAGE ; ORGANOPHOSPHORUS ; ECOTOXICOLOGY |
WOS类目 | Ecology ; Environmental Sciences ; Toxicology |
WOS研究方向 | Environmental Sciences & Ecology ; Toxicology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/396038 |
推荐引用方式 GB/T 7714 | Contador-Kelsall, Isabella,Maute, Kimberly,de Beer, Maxwell,et al. Individual variation within wild populations of an arid-zone lizard dictates oxidative stress levels despite exposure to sublethal pesticides[J],2023,32(4):470-486. |
APA | Contador-Kelsall, Isabella,Maute, Kimberly,de Beer, Maxwell,&French, Kristine.(2023).Individual variation within wild populations of an arid-zone lizard dictates oxidative stress levels despite exposure to sublethal pesticides.ECOTOXICOLOGY,32(4),470-486. |
MLA | Contador-Kelsall, Isabella,et al."Individual variation within wild populations of an arid-zone lizard dictates oxidative stress levels despite exposure to sublethal pesticides".ECOTOXICOLOGY 32.4(2023):470-486. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。