Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.ecolind.2023.110300 |
Changes in land use are associated with the accumulation of soil phytolith-occluded organic carbon | |
Wang, Linjiao; Wang, Ke; Sheng, Maoyin | |
通讯作者 | Sheng, M |
来源期刊 | ECOLOGICAL INDICATORS
![]() |
ISSN | 1470-160X |
EISSN | 1872-7034 |
出版年 | 2023 |
卷号 | 151 |
英文摘要 | Organic carbon occluded in phytoliths is extremely stable and plays important roles in long-term preservation of soil and stable carbon sequestration in terrestrial ecosystems. To clarify the effects of land-use changes on the accumulation of soil phytolith-occluded organic carbon (PhytOC), the typical six land-use types of forest, open forest, shrub, grassland, corn field and abandoned farmland in Southwest China were used to study the associations of soil PhytOC accumulation with land-use change. The present results showed that land-use changes significantly affected soil PhytOC accumulation and its proportion to TSOC (total soil organic carbon). Compared to vegetation coverage, vegetation productivity increased soil PhytOC accumulation more effectively. The content and reserves of soil PhytOC in the open forest all ranked highest among the six land uses studied. Forest thinning not only substantially increased soil stable organic carbon sequestration but also obviously increased the TSOC pool. When land use changed from forest to grassland, there were obvious releases or run off of soil organic carbon, but the stability of the soil organic C pool improved obviously. After the corn field was abandoned, the PhytOC pool did not vary obviously. Soil pH was the important factor influencing the soil PhytOC pool, and acidic soils were made against PhytOC accumulation in soils. Soil PhytOC accumulation was significantly affected by soil C, N and P nutrition contents and stoichiometric ratios. Significant negative effects of bulk density on PhytOC accumulation in soils were observed. The present results are of great significance in land use regulation for increasing the soil carbon sink of terrestrial ecosystems. |
英文关键词 | Phytolith PhytOC C pool Response Karst |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000991014500001 |
WOS关键词 | ROCKY-DESERTIFICATION ; BIOGENIC SILICA ; SEQUESTRATION ; NITROGEN ; IMPACT ; CHINA ; STRATEGIES ; DELTA-C-13 ; GRASSLAND ; CHEMISTRY |
WOS类目 | Biodiversity Conservation ; Environmental Sciences |
WOS研究方向 | Biodiversity & Conservation ; Environmental Sciences & Ecology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/395937 |
推荐引用方式 GB/T 7714 | Wang, Linjiao,Wang, Ke,Sheng, Maoyin. Changes in land use are associated with the accumulation of soil phytolith-occluded organic carbon[J],2023,151. |
APA | Wang, Linjiao,Wang, Ke,&Sheng, Maoyin.(2023).Changes in land use are associated with the accumulation of soil phytolith-occluded organic carbon.ECOLOGICAL INDICATORS,151. |
MLA | Wang, Linjiao,et al."Changes in land use are associated with the accumulation of soil phytolith-occluded organic carbon".ECOLOGICAL INDICATORS 151(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。