Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.ecolind.2023.110087 |
Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China | |
Li, Yinshuai; Chang, Chunyan; Wang, Zhuoran; Zhao, Gengxing | |
通讯作者 | Chang, CY ; Zhao, GX |
来源期刊 | ECOLOGICAL INDICATORS
![]() |
ISSN | 1470-160X |
EISSN | 1872-7034 |
出版年 | 2023 |
卷号 | 148 |
英文摘要 | As a global problem of soil degradation, salinization has become a major obstacle to the sustainable development of the ecological environment and agriculture in coastal plains. However, the traditional process of salinity survey is too cumbersome, expensive and time-consuming to meet the mapping needs in a large scale. Remote sensing technology has become an important tool for digital soil mapping because of its rich sources, real-time and low cost. In order to meet the objective demand for rapid, accurate, and efficient acquisition and monitoring of soil salinization. This paper collected 61 soil samples from the Kenli District (experimental area) and extracted vegetation and salinity indicators from the Landsat image to construct the salinity inversion model by random forest algorithm. Then, taking the Yellow River Delta as the study area, the conversion coefficient of spectral indicators between Landsat and MODIS images was constructed in the form of the ratio of the mean value. Through optimization, the upscaling conversion method based on land use regionalization was proposed to realize the upscaling inversion and dynamic monitoring of soil salinization. The results showed that: (1) The random forest model based on NDVI, RVI, EVI, SI3, and SI5 can better predict the soil salinity in the experimental area, with R2 = 0.821 and RMSE = 2.811 (validation accuracy). (2) The upscaling conversion method based on land use regionalization can effectively reduce the statistical error and collinearity of spectral indicators con-structed by MODIS images and improve their correlation with OLI data and soil salinity. (3) From coastal to inland, soil salinization gradually decreases in the Yellow River Delta. From 2000 to 2020, soil salinization increased first and then decreased, and the salinized soil accounted for 20.35%similar to 35.10%. This study used multi-source remote sensing data to realize the collaborative inversion at different scales, which was significant for the quantitative estimation of soil salinity, salinization control, and sustainable agricultural development in coastal plains. |
英文关键词 | Soil salinization Remote sensing inversion Spectral indicator Upscaling conversion Yellow River Delta China |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000953223600001 |
WOS关键词 | MODIS TIME-SERIES ; SALINITY ; IMAGES ; LAND ; MESOPOTAMIA ; XINJIANG ; PROVINCE ; MACHINE ; IMPACT ; OASIS |
WOS类目 | Biodiversity Conservation ; Environmental Sciences |
WOS研究方向 | Biodiversity & Conservation ; Environmental Sciences & Ecology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/395927 |
推荐引用方式 GB/T 7714 | Li, Yinshuai,Chang, Chunyan,Wang, Zhuoran,et al. Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China[J],2023,148. |
APA | Li, Yinshuai,Chang, Chunyan,Wang, Zhuoran,&Zhao, Gengxing.(2023).Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China.ECOLOGICAL INDICATORS,148. |
MLA | Li, Yinshuai,et al."Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China".ECOLOGICAL INDICATORS 148(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。