Arid
DOI10.1016/j.compag.2022.107581
UAS-based imaging for prediction of chickpea crop biophysical parameters and yield
Avneri, Asaf; Aharon, Shlomi; Brook, Anna; Atsmon, Guy; Smirnov, Evgeny; Sadeh, Roy; Abbo, Shahal; Peleg, Zvi; Herrmann, Ittai; Bonfil, David J.; Lati, Ran Nisim
通讯作者Lati, RN
来源期刊COMPUTERS AND ELECTRONICS IN AGRICULTURE
ISSN0168-1699
EISSN1872-7107
出版年2023
卷号205
英文摘要Chickpea (Cicer arietinum L.) is a key legume crop grown in many semi-arid areas. Traditionally, chickpea is a rainfed spring crop, but in certain countries it has become an irrigated crop. The main objective of this study was to evaluate the ability of Unmanned Aerial Systems (UAS) imaging platform with an integrated RGB camera to provide estimations of leaf area index (LAI), biomass, and yield for chickpea during the irrigation period. Two field trials were conducted in 2019 and 2020, in which chickpea plants were subjected to five and six irrigation regimes, respectively. Eight vegetation indexes (VIs) and three morphological parameters were estimated from the RGB images. In parallel, biomass was determined, LAI was measured manually, and yield was determined at full maturity. In total, 294 plant samples were acquired and analyzed over the two years. Firstly, each of the VIs and morphological parameters were correlated separately against the two biophysical parameters and yield. Then, all the VIs and morphological parameters were analyzed together, and two statistical models, partial least squares regression (PLS-R) and support vector machine (SVM); were used to predict biomass and LAI. The yield was predicted using multi-linear regression (MLR). When each index or morphological parameter was analyzed separately, plant height and some of the VIs provided adequate predictions of the biophysical parameters in 2019 (R2 values >= 0.50) but failed (R2 values <= 0.25) in 2020. The integration of the VIs with the morphological parameters and the use of PLS-R and SVM models increased the accuracy level for both biophysical parameters (R2 ranged from 0.31 to 0.96) and mitigated the lack of consistency between the years. The SVM model was superior to the PLS-R model in both biophysical parameters. The R2 values for the combined 2019 and 2020 biomass model increased, at the model-testing stage, from 0.62 to 0.96 and the RMSE values dropped from 1778 to 490 kg ha-1. The ability of the SVM model to estimate chickpea biomass and LAI can provide convenient support for different management decisions, including timing and amount of irrigation and harvest date.
英文关键词Biomass Data -fusion LAI Machine learning PLS-R SVM
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000913350800001
WOS关键词VEGETATION INDEXES ; GRAIN-YIELD ; BRASSICA-NAPUS ; DATA FUSION ; SEED YIELD ; BIOMASS ; WHEAT ; SURFACE ; HEIGHT ; REGRESSION
WOS类目Agriculture, Multidisciplinary ; Computer Science, Interdisciplinary Applications
WOS研究方向Agriculture ; Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395814
推荐引用方式
GB/T 7714
Avneri, Asaf,Aharon, Shlomi,Brook, Anna,et al. UAS-based imaging for prediction of chickpea crop biophysical parameters and yield[J],2023,205.
APA Avneri, Asaf.,Aharon, Shlomi.,Brook, Anna.,Atsmon, Guy.,Smirnov, Evgeny.,...&Lati, Ran Nisim.(2023).UAS-based imaging for prediction of chickpea crop biophysical parameters and yield.COMPUTERS AND ELECTRONICS IN AGRICULTURE,205.
MLA Avneri, Asaf,et al."UAS-based imaging for prediction of chickpea crop biophysical parameters and yield".COMPUTERS AND ELECTRONICS IN AGRICULTURE 205(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Avneri, Asaf]的文章
[Aharon, Shlomi]的文章
[Brook, Anna]的文章
百度学术
百度学术中相似的文章
[Avneri, Asaf]的文章
[Aharon, Shlomi]的文章
[Brook, Anna]的文章
必应学术
必应学术中相似的文章
[Avneri, Asaf]的文章
[Aharon, Shlomi]的文章
[Brook, Anna]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。