Arid
DOI10.1016/j.compchemeng.2023.108275
An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of Li-ion batteries
Bhadriraju, Bhavana; Kwon, Joseph Sang-Il; Khan, Faisal
通讯作者Kwon, JSI
来源期刊COMPUTERS & CHEMICAL ENGINEERING
ISSN0098-1354
EISSN1873-4375
出版年2023
卷号175
英文摘要During the multi-cycle operation of a Li-ion battery, its process dynamics evolve in two distinct timescales: slow degradation dynamics over multiple cycles and fast cycling dynamics during each cycle. The slow inter-cyclic dynamics of capacity degradation describes remaining useful life (RUL), and the fast intra-cyclic dynamics of state of charge (SoC) and voltage provides an insight into available power, temperature change, and charge and discharge times. Hence, predicting both intra and inter-cyclic dynamics aids in understanding battery degradation and assessing its performance. To this end, we develop a data-driven approach to model both fast and slow degradation dynamics using operable adaptive sparse identification of systems (OASIS). Specifically, the developed method determines two battery models: inter-OASIS and intra-OASIS. The inter-OASIS model predicts capacity degradation and estimates RUL, and utilizing this prediction, the intra-OASIS model accurately predicts SoC and voltage dynamics. The developed method is demonstrated on a LiFePO4/graphite battery system.
英文关键词Remaining useful life Li-ion battery Sparse regression Deep learning Real-time prediction Adaptive modeling
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001001548700001
WOS关键词SINGLE-PARTICLE MODEL ; SPARSE IDENTIFICATION ; MULTISCALE SIMULATION ; STATE ; CHARGE ; DEGRADATION ; REGRESSION ; FRAMEWORK ; PROGNOSTICS ; PARAMETER
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Chemical
WOS研究方向Computer Science ; Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395811
推荐引用方式
GB/T 7714
Bhadriraju, Bhavana,Kwon, Joseph Sang-Il,Khan, Faisal. An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of Li-ion batteries[J],2023,175.
APA Bhadriraju, Bhavana,Kwon, Joseph Sang-Il,&Khan, Faisal.(2023).An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of Li-ion batteries.COMPUTERS & CHEMICAL ENGINEERING,175.
MLA Bhadriraju, Bhavana,et al."An adaptive data-driven approach for two-timescale dynamics prediction and remaining useful life estimation of Li-ion batteries".COMPUTERS & CHEMICAL ENGINEERING 175(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
百度学术
百度学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
必应学术
必应学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。