Arid
DOI10.32604/cmc.2023.031406
Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions
Jamei, Mehdi; Bailek, Nadjem; Bouchouicha, Kada; Hassan, Muhammed A.; Elbeltagi, Ahmed; Kuriqi, Alban; Al-Ansar, Nadhir; Almorox, Javier; El-kenawy, El-Sayed M.
通讯作者Bailek, N
来源期刊CMC-COMPUTERS MATERIALS & CONTINUA
ISSN1546-2218
EISSN1546-2226
出版年2023
卷号74期号:1页码:1625-1640
英文摘要Solar energy represents one of the most important renewable energy sources contributing to the energy transition process. Considering that the observation of daily global solar radiation (GSR) is not affordable in some parts of the globe, there is an imperative need to develop alternative ways to predict it. Therefore, the main objective of this study is to evaluate the performance of different hybrid data-driven techniques in predicting daily GSR in semi-arid regions, such as the majority of Spanish territory. Here, four ensemble-based hybrid models were developed by hybridizing Addi-tive Regression (AR) with Random Forest (RF), Locally Weighted Linear Regression (LWLR), Random Subspace (RS), and M5P. The base algorithms of the developed models are scarcely applied in previous studies to predict solar radiation. The testing phase outcomes demonstrated that the AR-RF models outperform all other hybrid models. The provided models were validated by statistical metrics, such as the correlation coefficient (R) and root mean square error (RMSE). The results proved that Scenario #6, utilizing extraterrestrial solar radiation, relative humidity, wind speed, and mean, maximum, and minimum ambient air temperatures as the model inputs, leads to the most accurate predictions among all scenarios (R = 0.968-0.988 and RMSE = 1.274-1.403 MJ/m2middotd). Also, Scenario #3 stood in the next rank of accuracy for predicting the solar radiation in both validating stations. The AD-RF model was the best predictive, followed by AD-RS and AD-LWLR. Hence, this study recommends new effective methods to predict GSR in semi-arid regions.
英文关键词Solar radiation prediction random forest locally-weighted linear regression additive regression
类型Article
语种英语
开放获取类型Green Submitted, gold
收录类别SCI-E
WOS记录号WOS:000874032400023
WOS关键词RANDOM SUBSPACE ENSEMBLES
WOS类目Computer Science, Information Systems ; Materials Science, Multidisciplinary
WOS研究方向Computer Science ; Materials Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395784
推荐引用方式
GB/T 7714
Jamei, Mehdi,Bailek, Nadjem,Bouchouicha, Kada,et al. Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions[J],2023,74(1):1625-1640.
APA Jamei, Mehdi.,Bailek, Nadjem.,Bouchouicha, Kada.,Hassan, Muhammed A..,Elbeltagi, Ahmed.,...&El-kenawy, El-Sayed M..(2023).Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions.CMC-COMPUTERS MATERIALS & CONTINUA,74(1),1625-1640.
MLA Jamei, Mehdi,et al."Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions".CMC-COMPUTERS MATERIALS & CONTINUA 74.1(2023):1625-1640.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jamei, Mehdi]的文章
[Bailek, Nadjem]的文章
[Bouchouicha, Kada]的文章
百度学术
百度学术中相似的文章
[Jamei, Mehdi]的文章
[Bailek, Nadjem]的文章
[Bouchouicha, Kada]的文章
必应学术
必应学术中相似的文章
[Jamei, Mehdi]的文章
[Bailek, Nadjem]的文章
[Bouchouicha, Kada]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。