Arid
DOI10.3354/cr01723
Reference evapotranspiration estimation using machine learning approaches for arid and semi-arid regions of India
Heramb, Pangam; Rao, K. V.; Subeesh, A.; Singh, R. K.; Rajwade, Yogesh A.; Singh, Karan; Kumar, Manoj; Rawat, Shashi
通讯作者Rajwade, YA
来源期刊CLIMATE RESEARCH
ISSN0936-577X
EISSN1616-1572
出版年2023
卷号91页码:97-120
英文摘要Accurate estimation of reference evapotranspiration (ET0) is vital for hydrological studies and irrigation scheduling. This study aimed to estimate ET0 using 4 machine learning algorithms: random forest, support vector machine, light gradient boosting decision trees and extreme gradient decision trees. Daily data for 2001 to 2020 at 11 (arid and semi-arid) stations were used for modelling. Eighteen scenarios with different input combinations were evaluated using the data of maximum and minimum air temperature, mean relative humidity and wind speed, number of sunshine hours, solar radiation, and extra-terrestrial radiation data at these stations. The ET0 estimated using the FAO 56 Penman-Monteith equation was chosen as the target value for model fitting. The best input combination was found in the models that used all inputs, while the least accurate were the models that used temperature data only. The results showed that the support vector machine models outperformed the other models at most stations. The application of various input combinations indicated that the use of fewer inputs also gave reasonable accuracy in the modelling. In addition, wind speed and solar radiation were found to be important parameters for precise estimation.
英文关键词Arid Semi-arid Evapotranspiration Soft computing Tree-based models
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001079837100001
WOS关键词MODELS ; CLIMATES ; ELM
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395781
推荐引用方式
GB/T 7714
Heramb, Pangam,Rao, K. V.,Subeesh, A.,et al. Reference evapotranspiration estimation using machine learning approaches for arid and semi-arid regions of India[J],2023,91:97-120.
APA Heramb, Pangam.,Rao, K. V..,Subeesh, A..,Singh, R. K..,Rajwade, Yogesh A..,...&Rawat, Shashi.(2023).Reference evapotranspiration estimation using machine learning approaches for arid and semi-arid regions of India.CLIMATE RESEARCH,91,97-120.
MLA Heramb, Pangam,et al."Reference evapotranspiration estimation using machine learning approaches for arid and semi-arid regions of India".CLIMATE RESEARCH 91(2023):97-120.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Heramb, Pangam]的文章
[Rao, K. V.]的文章
[Subeesh, A.]的文章
百度学术
百度学术中相似的文章
[Heramb, Pangam]的文章
[Rao, K. V.]的文章
[Subeesh, A.]的文章
必应学术
必应学术中相似的文章
[Heramb, Pangam]的文章
[Rao, K. V.]的文章
[Subeesh, A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。