Arid
DOI10.1590/1413-7054202347010922
Deep learning with aerial surveys for extensive livestock hotspot recognition in the Brazilian Semi-arid Region
Lima, Mayara Lopes de Freitas; de Souza, Samara Maria Farias; de Sa, Isabelle Ventura; Santana, Otacilio Antunes
通讯作者Santana, OA
来源期刊CIENCIA E AGROTECNOLOGIA
ISSN1413-7054
EISSN1981-1829
出版年2023
卷号47
英文摘要In the Brazilian Semi-arid Region, extensive livestock farming with ecoproductive management is the most efficient way to maintain and increase the production of goat products (e.g., meat) with of not depleting environmental resources. This set of actions (induced goat migration and pasture closure) is part of Livestock 4.0, in which Industry 4.0 feed areas are efficiently managed using artificial intelligence and deep learning properly monitored by the producer and the consumer. The objective of this work was to identify pasture areas with Opuntia ficus-indica (Mill, Cactaceae) forage palm species for breeding and production of Capra aegagrus-hircus goats (Lineu, Bovidae) using aerial survey images captured by drones classified using deep learning techniques. The methodological steps of the Industry Architecture Reference Model 4.0 were adapted to the field situation (Semi-arid Region) including (A) study area delimitation, (B) image collection (by drones), (C) deep learning training, convolutional neural network (CNN) training, (D) training accuracy analysis, and (E) automatic goat production evaluation and validation. The area classification based on the forage palm density allowed us to measure the environmental degradation caused by livestock. Stimulated goat migration reduced this degradation as well as increased goat biomass and volume production.
英文关键词Industry 4 0 convolutional neural network sustainable farming smart factory
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000954044100001
WOS关键词TECHNOLOGY ; SCIENCE
WOS类目Agriculture, Multidisciplinary ; Agronomy
WOS研究方向Agriculture
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395757
推荐引用方式
GB/T 7714
Lima, Mayara Lopes de Freitas,de Souza, Samara Maria Farias,de Sa, Isabelle Ventura,et al. Deep learning with aerial surveys for extensive livestock hotspot recognition in the Brazilian Semi-arid Region[J],2023,47.
APA Lima, Mayara Lopes de Freitas,de Souza, Samara Maria Farias,de Sa, Isabelle Ventura,&Santana, Otacilio Antunes.(2023).Deep learning with aerial surveys for extensive livestock hotspot recognition in the Brazilian Semi-arid Region.CIENCIA E AGROTECNOLOGIA,47.
MLA Lima, Mayara Lopes de Freitas,et al."Deep learning with aerial surveys for extensive livestock hotspot recognition in the Brazilian Semi-arid Region".CIENCIA E AGROTECNOLOGIA 47(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lima, Mayara Lopes de Freitas]的文章
[de Souza, Samara Maria Farias]的文章
[de Sa, Isabelle Ventura]的文章
百度学术
百度学术中相似的文章
[Lima, Mayara Lopes de Freitas]的文章
[de Souza, Samara Maria Farias]的文章
[de Sa, Isabelle Ventura]的文章
必应学术
必应学术中相似的文章
[Lima, Mayara Lopes de Freitas]的文章
[de Souza, Samara Maria Farias]的文章
[de Sa, Isabelle Ventura]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。