Arid
DOI10.1016/j.catena.2023.107375
Evaluating the spatiotemporal variations of soil salinity in Sirjan Playa, Iran using Sentinel-2A and Landsat-8 OLI imagery
Golestani, Mojdeh; Ghahfarokhi, Zohreh Mosleh; Esfandiarpour-Boroujeni, Isa; Shirani, Hossein
通讯作者Ghahfarokhi, ZM
来源期刊CATENA
ISSN0341-8162
EISSN1872-6887
出版年2023
卷号231
英文摘要The creation of large-scale deserts is a consequence of soil salinization, a major land degradation phenomenon that also disrupts ecological equilibrium. Saline lands can be evaluated, mapped, and monitored in different world regions using satellite imaging and remote sensing techniques. In order to assess the ability of Landsat-8 and Sentinel-2A imagery for monitoring the spatiotemporal variations of electrical conductivity (EC) and to determine the importance of salinity indices for prediction in two seasons (summer and winter) using the systematic sampling method, from surface depth (0--20 cm), 90 soil samples were taken of marginal lands of Sirjan Playa, southeast of Iran. Satellite images for two seasons were acquired close to the sampling time to obtain the soil salinity indices. Four machine-learning algorithms, namely artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machine (SVM), were applied to estimate the spatiotemporal changes in soil salinity. Results confirmed that the ANN model developed by the Sentinel-2A image had the highest performance (R2 = 0.77, RMSE = 16.1, NRMSE = 27.1) to predict ECe in the winter season. Furthermore, RF presents the lowest error for prediction ECe during the summer, independent type of satellite data used. Additionally, in virtually all of the analyzed models, the Sentinel-2A data produced lower RMSE and NRMSE values than the Landsat-8 data throughout the two seasons. Results also confirmed that among the soil salinity indices, the Vegetation Soil Salinity Index (VSSI) was identified as the most effective predictor. Overall, this study demonstrates the potential of satellite imaging and machine learning algorithms for monitoring and predicting soil salinity, which can contribute to the sustainable management of marginal lands in arid and semi-arid regions. The findings also highlight the importance of selecting appropriate satellite data and salinity indices for accurate and reliable predictions.
英文关键词Machine learning Satellite image Salinity indices Remote sensing
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001039368600001
WOS关键词SUPPORT VECTOR MACHINE ; WATER-QUALITY ; REGION ; LAKE ; REGRESSION ; PREDICTION ; MODEL ; MSI
WOS类目Geosciences, Multidisciplinary ; Soil Science ; Water Resources
WOS研究方向Geology ; Agriculture ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395696
推荐引用方式
GB/T 7714
Golestani, Mojdeh,Ghahfarokhi, Zohreh Mosleh,Esfandiarpour-Boroujeni, Isa,et al. Evaluating the spatiotemporal variations of soil salinity in Sirjan Playa, Iran using Sentinel-2A and Landsat-8 OLI imagery[J],2023,231.
APA Golestani, Mojdeh,Ghahfarokhi, Zohreh Mosleh,Esfandiarpour-Boroujeni, Isa,&Shirani, Hossein.(2023).Evaluating the spatiotemporal variations of soil salinity in Sirjan Playa, Iran using Sentinel-2A and Landsat-8 OLI imagery.CATENA,231.
MLA Golestani, Mojdeh,et al."Evaluating the spatiotemporal variations of soil salinity in Sirjan Playa, Iran using Sentinel-2A and Landsat-8 OLI imagery".CATENA 231(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Golestani, Mojdeh]的文章
[Ghahfarokhi, Zohreh Mosleh]的文章
[Esfandiarpour-Boroujeni, Isa]的文章
百度学术
百度学术中相似的文章
[Golestani, Mojdeh]的文章
[Ghahfarokhi, Zohreh Mosleh]的文章
[Esfandiarpour-Boroujeni, Isa]的文章
必应学术
必应学术中相似的文章
[Golestani, Mojdeh]的文章
[Ghahfarokhi, Zohreh Mosleh]的文章
[Esfandiarpour-Boroujeni, Isa]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。