Arid
DOI10.1016/j.atmosenv.2023.119930
The impact of different aerosol layering conditions on the high-resolution MODIS/MAIAC AOD retrieval bias: The uncertainty analysis
Rogozovsky, Irina; Ohneiser, Kevin; Lyapustin, Alexei; Ansmann, Albert; Chudnovsky, Alexandra
通讯作者Rogozovsky, I ; Chudnovsky, A
来源期刊ATMOSPHERIC ENVIRONMENT
ISSN1352-2310
EISSN1873-2844
出版年2023
卷号309
英文摘要The Eastern Mediterranean/Middle East (EMME) region belongs to one of the most polluted and vulnerable to climate change related areas in the world. To monitor these changes, comprehensive set of measurements need to be conducted. Ground-level monitoring sites provide continuous measurements, yet their spatial coverage in EMME is very limited. Satellite data largely expand spatial coverage, however, retrieval accuracy over arid regions with bright surface background, mixed with urban and industrial sources, remains challenging. In this study, we analyzed the agreement between aerosol optical depth (AOD) data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm at 1-km spatial resolution and corresponding ground-based Aerosol Robotic Network (AERONET) measurements, using data from September 2019 to October 2022 in Tel Aviv, Israel. We identified all overestimation and underestimation MAIAC AOD measurements, relative to AERONET, and used multiwavelength polarization lidar observations of vertical aerosol profiles to characterize these conditions. Our findings suggest that under clear atmospheric conditions (AOD<0.12), MAIAC overestimation prevails, while under dusty (AOD>0.3), and partially cloudy conditions, MAIAC underestimation prevails. We found that dust component (high particle depolarization ratio, and low Angstrom exponent) is often presented in cases of underestimation, while a single layer overestimation cases typically related to anthropogenic pollution. The two-layers overestimation cases tend to have marine aerosols at the bottom and mixed pollution sources at the top. Our study highlights the importance of studying the different layering conditions that largely bias the MAIAC AOD retrieval accuracy. This knowledge is highly important since AOD is widely used as input variable in numerous modeling studies and air quality applications and rarely prepossessed for such a bias.
英文关键词Aerosol optical depth (AOD) Multi-angle implementation of atmospheric correction (MAIAC) Polly-lidar Atmospheric vertical profile MAIAC AOD bias
类型Article
语种英语
开放获取类型Bronze
收录类别SCI-E
WOS记录号WOS:001148640100001
WOS关键词OPTICAL DEPTH ; ATMOSPHERIC CORRECTION ; TEMPORAL VARIABILITY ; PM2.5 CONCENTRATIONS ; LIDAR OBSERVATIONS ; MODIS SATELLITE ; POLLUTION ; EASTERN ; DUST ; POLARIZATION
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395494
推荐引用方式
GB/T 7714
Rogozovsky, Irina,Ohneiser, Kevin,Lyapustin, Alexei,et al. The impact of different aerosol layering conditions on the high-resolution MODIS/MAIAC AOD retrieval bias: The uncertainty analysis[J],2023,309.
APA Rogozovsky, Irina,Ohneiser, Kevin,Lyapustin, Alexei,Ansmann, Albert,&Chudnovsky, Alexandra.(2023).The impact of different aerosol layering conditions on the high-resolution MODIS/MAIAC AOD retrieval bias: The uncertainty analysis.ATMOSPHERIC ENVIRONMENT,309.
MLA Rogozovsky, Irina,et al."The impact of different aerosol layering conditions on the high-resolution MODIS/MAIAC AOD retrieval bias: The uncertainty analysis".ATMOSPHERIC ENVIRONMENT 309(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rogozovsky, Irina]的文章
[Ohneiser, Kevin]的文章
[Lyapustin, Alexei]的文章
百度学术
百度学术中相似的文章
[Rogozovsky, Irina]的文章
[Ohneiser, Kevin]的文章
[Lyapustin, Alexei]的文章
必应学术
必应学术中相似的文章
[Rogozovsky, Irina]的文章
[Ohneiser, Kevin]的文章
[Lyapustin, Alexei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。