Arid
DOI10.3390/app132212245
The Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Classification of Desert Grassland Plants in Inner Mongolia, China
Wang, Shengli; Bi, Yuge; Du, Jianmin; Zhang, Tao; Gao, Xinchao; Jin, Erdmt
通讯作者Du, JM
来源期刊APPLIED SCIENCES-BASEL
EISSN2076-3417
出版年2023
卷号13期号:22
英文摘要In recent years, grassland ecosystems have faced increasingly severe desertification, which has caused continuous changes in the vegetation composition in grassland ecosystems. Therefore, effective research on grassland plant taxa is crucial to exploring the process of grassland desertification. This study proposed a solution by constructing a UAV hyperspectral remote sensing system to collect the hyperspectral data of various species in desert grasslands. This approach overcomes the limitations of traditional grassland survey methods such as a low efficiency and insufficient spatial resolution. A streamlined 2D-CNN model with different feature enhancement modules was constructed, and an improved depth-separable convolution approach was used to classify the desert grassland plants. The model was compared with existing hyperspectral classification models, such as ResNet34 and DenseNet121, under the preprocessing condition of data downscaling by combining the variance and F-norm2. The results showed that the model outperformed the other models in terms of the overall classification accuracy, kappa coefficient, and memory occupied, achieving 99.216%, 98.735%, and 16.3 MB, respectively. This model could effectively classify desert grassland species. This method provides a new approach for monitoring grassland ecosystem degradation.
英文关键词desert grassland UAV hyperspectral remote sensing lightweight network species classification
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001120797400001
WOS关键词IMAGERY
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395374
推荐引用方式
GB/T 7714
Wang, Shengli,Bi, Yuge,Du, Jianmin,et al. The Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Classification of Desert Grassland Plants in Inner Mongolia, China[J],2023,13(22).
APA Wang, Shengli,Bi, Yuge,Du, Jianmin,Zhang, Tao,Gao, Xinchao,&Jin, Erdmt.(2023).The Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Classification of Desert Grassland Plants in Inner Mongolia, China.APPLIED SCIENCES-BASEL,13(22).
MLA Wang, Shengli,et al."The Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Classification of Desert Grassland Plants in Inner Mongolia, China".APPLIED SCIENCES-BASEL 13.22(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shengli]的文章
[Bi, Yuge]的文章
[Du, Jianmin]的文章
百度学术
百度学术中相似的文章
[Wang, Shengli]的文章
[Bi, Yuge]的文章
[Du, Jianmin]的文章
必应学术
必应学术中相似的文章
[Wang, Shengli]的文章
[Bi, Yuge]的文章
[Du, Jianmin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。