Arid
DOI10.3390/agriculture13030704
Progress of Euhalophyte Adaptation to Arid Areas to Remediate Salinized Soil
Wang, Yanyan; Wang, Shiqi; Zhao, Zhenyong; Zhang, Ke; Tian, Changyan; Mai, Wenxuan
通讯作者Mai, WX
来源期刊AGRICULTURE-BASEL
EISSN2077-0472
出版年2023
卷号13期号:3
英文摘要With the increasing shortage of water resources, the current management of saline-alkali lands in semi-arid and arid areas has gradually transformed from flooding irrigation with drainage in the past to the combination of controlling regional water and salt balance, phytoremediation, and comprehensive utilization of halophyte resources. However, soil salinization caused by natural and anthropogenic factors has still been a major global environmental problem, which changes the chemical and physical properties of soil, deteriorates the quality of underground water, and decreases biodiversity, contributing to the loss of soil productivity and the succession of the halotolerant species. Euhalophytes, as the materials for phytoremediation, have been confirmed to be effective species in improving saline-alkali soils. They can redistribute salts in soil profile through the interaction of their desalinization potential and irrigation water leaching, thereby preventing secondary salinization and improving soil productivity for long-term reclamation of saline soil. In this review, the adaptation mechanisms of euhalophytes to saline soils are generalized from the views of morphological, physiological, and molecular aspects and evaluated for their potential to remediate saline soil through salt removal and promoting leaching. Euhalophytes can not only sequestrate salts inside the central vacuole of cells to tolerate higher salt stress by means of organ succulence, ion compartmentalization, and osmotic adjustment but facilitate water infiltration and salts leaching through root-soil interaction. The root system's mechanical penetration increases soil porosity, decreases soil density, as well as stabilizes soil aggregates. Moreover, the suitability of phytoremediation in arid situations with low precipitation and non-irrigation and some agricultural practices need to be taken into account to avoid salts returning to the soil as forms of litter and deep tillage altering salt distribution. Hence, euhalophytes planting in semi-arid and arid areas should be evaluated from their adaptation, desalinization, and prospective commercial values, such as foods, biofuels, and medical development to alleviate soil secondary salinization crisis and enhance the productivity of arable agricultural land.
英文关键词salinization euhalophyte phytoremediation adaptation mechanism remediation of salinized soil
类型Review
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000953640500001
WOS关键词HALOPHYTE SUAEDA-SALSA ; DIMORPHIC SEEDS ; ION ACCUMULATION ; ANTIPORTER GENE ; TOLERANCE ; AGRICULTURE ; WATER ; PLANTS ; GROWTH ; GERMINATION
WOS类目Agronomy
WOS研究方向Agriculture
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/395140
推荐引用方式
GB/T 7714
Wang, Yanyan,Wang, Shiqi,Zhao, Zhenyong,et al. Progress of Euhalophyte Adaptation to Arid Areas to Remediate Salinized Soil[J],2023,13(3).
APA Wang, Yanyan,Wang, Shiqi,Zhao, Zhenyong,Zhang, Ke,Tian, Changyan,&Mai, Wenxuan.(2023).Progress of Euhalophyte Adaptation to Arid Areas to Remediate Salinized Soil.AGRICULTURE-BASEL,13(3).
MLA Wang, Yanyan,et al."Progress of Euhalophyte Adaptation to Arid Areas to Remediate Salinized Soil".AGRICULTURE-BASEL 13.3(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yanyan]的文章
[Wang, Shiqi]的文章
[Zhao, Zhenyong]的文章
百度学术
百度学术中相似的文章
[Wang, Yanyan]的文章
[Wang, Shiqi]的文章
[Zhao, Zhenyong]的文章
必应学术
必应学术中相似的文章
[Wang, Yanyan]的文章
[Wang, Shiqi]的文章
[Zhao, Zhenyong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。