Arid
DOI10.1016/j.ufug.2021.127445
Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India
Uniyal, Swati; Purohit, Saurabh; Chaurasia, Kuldeep; Amminedu, Eadara; Rao, Sitiraju Srinivas
通讯作者Uniyal, S
来源期刊URBAN FORESTRY & URBAN GREENING
ISSN1618-8667
EISSN1610-8167
出版年2022
卷号67
英文摘要Urban forests play a significant role in carbon cycling. Quantification of Aboveground Biomass (AGB) is critical to understand the role of urban forests in carbon sequestration. In the present study, Machine learning (ML) based regression algorithms (SVM, RF, kNN and XGBoost) have been taken into account for spatial mapping of AGB and carbon for the urban forests of Jodhpur city, Rajasthan, India, with the aid of field-based data and their correlations with spectra and textural variables derived from Landsat 8 OLI data. A total of 198 variables were retrieved from the satellite image, including bands, Vegetation Indices (VIs), linearly transformed variables, and Grey Level Co-occurrence textures (GLCM) taken as independent input variables further reduced to 29 variables using Boruta feature selection method. All the models have been compared where with RF algorithm, R-2 = 0.83, RMSE = 16.22 t/ha and MAE = 11.86 t/ha. For kNN algorithm R-2 = 0.77, RMSE = 28.04 t/ha and MAE = 24.24 t/ha and SVM where R-2 = 0.73, RMSE = 89.21 t/ha and MAE = 74.22 t/ha and the best prediction accuracy has been noted with XGBoost algorithm (R-2 = 0.89, RMSE = 14.08 t/ha and MAE = 13.66 t/ha) with predicted AGB as 0.51-153.76 t/ha. The study indicates that ML-based regression algorithms have great potential over other linear and multiple regression techniques for spatial mapping of AGB and carbon of urban forests for arid regions.
英文关键词Aboveground biomass Carbon Landsat 8 OLI Machine learning Urban forests
类型Article
语种英语
收录类别SCI-E ; SSCI
WOS记录号WOS:000789613300005
WOS关键词ABOVEGROUND BIOMASS ; ALLOMETRIC EQUATIONS ; TREE ALLOMETRY ; STORAGE ; AFRICA ; MODELS
WOS类目Plant Sciences ; Environmental Studies ; Forestry ; Urban Studies
WOS研究方向Plant Sciences ; Environmental Sciences & Ecology ; Forestry ; Urban Studies
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/394755
推荐引用方式
GB/T 7714
Uniyal, Swati,Purohit, Saurabh,Chaurasia, Kuldeep,et al. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India[J],2022,67.
APA Uniyal, Swati,Purohit, Saurabh,Chaurasia, Kuldeep,Amminedu, Eadara,&Rao, Sitiraju Srinivas.(2022).Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India.URBAN FORESTRY & URBAN GREENING,67.
MLA Uniyal, Swati,et al."Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India".URBAN FORESTRY & URBAN GREENING 67(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Uniyal, Swati]的文章
[Purohit, Saurabh]的文章
[Chaurasia, Kuldeep]的文章
百度学术
百度学术中相似的文章
[Uniyal, Swati]的文章
[Purohit, Saurabh]的文章
[Chaurasia, Kuldeep]的文章
必应学术
必应学术中相似的文章
[Uniyal, Swati]的文章
[Purohit, Saurabh]的文章
[Chaurasia, Kuldeep]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。