Arid
DOI10.3390/su14052666
Monitoring of Soil Salinization in the Keriya Oasis Based on Deep Learning with PALSAR-2 and Landsat-8 Datasets
Abulaiti, Adilai; Nurmemet, Ilyas; Muhetaer, Nuerbiye; Xiao, Sentian; Zhao, Jing
通讯作者Nurmemet, I
来源期刊SUSTAINABILITY
EISSN2071-1050
出版年2022
卷号14期号:5
英文摘要Currently, soil salinization is one of the main forms of land degradation and desertification. Soil salinization not only seriously restricts the development of agriculture and the economy, but also poses a threat to the ecological environment. The main purpose of this study is to map soil salinity in Keriya Oasis, northwestern China using the PALSAR-2 fully polarized synthetic aperture radar (PolSAR) L-band data and Landsat-8-OLI (OLI) optical data combined with deep learning (DL) methods. A field survey is conducted, and soil samples are collected from 20 April 2015 to 1 May 2015. To mine the hidden information in the PALSAR-2 data, multiple polarimetric decomposition methods are implemented, and a wide range of polarimetric parameters and synthetic aperture radar discriminators are derived. The radar vegetation index (RVI) is calculated using PALSAR-2 data, while the normalized difference vegetation index (NDVI) and salinity index (SI) are calculated using OLI data. The random forest (RF)-integrated learning algorithm is used to select the optimal feature subset composed of eight polarimetric elements. The RF, support vector machine, and DL methods are used to extract different degrees of salinized soil. The results show that the OLI+PALSAR-2 image classification result of the DL classification was relatively good, having the highest overall accuracy of 91.86% and a kappa coefficient of 0.90. This method is helpful to understand and monitor the spatial distribution of soil salinity more effectively to achieve sustainable agricultural development and ecological stability.
英文关键词soil salinization PALSAR-2 polarimetric decomposition deep learning
类型Article
语种英语
开放获取类型gold
收录类别SCI-E ; SSCI
WOS记录号WOS:000769443400001
WOS关键词POLARIMETRIC SAR DATA ; SCATTERING MODEL ; SALINITY ; CLASSIFICATIONS ; VEGETATION ; ACCURACY ; MOISTURE ; DESERT ; RIVER
WOS类目Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/394545
推荐引用方式
GB/T 7714
Abulaiti, Adilai,Nurmemet, Ilyas,Muhetaer, Nuerbiye,et al. Monitoring of Soil Salinization in the Keriya Oasis Based on Deep Learning with PALSAR-2 and Landsat-8 Datasets[J],2022,14(5).
APA Abulaiti, Adilai,Nurmemet, Ilyas,Muhetaer, Nuerbiye,Xiao, Sentian,&Zhao, Jing.(2022).Monitoring of Soil Salinization in the Keriya Oasis Based on Deep Learning with PALSAR-2 and Landsat-8 Datasets.SUSTAINABILITY,14(5).
MLA Abulaiti, Adilai,et al."Monitoring of Soil Salinization in the Keriya Oasis Based on Deep Learning with PALSAR-2 and Landsat-8 Datasets".SUSTAINABILITY 14.5(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abulaiti, Adilai]的文章
[Nurmemet, Ilyas]的文章
[Muhetaer, Nuerbiye]的文章
百度学术
百度学术中相似的文章
[Abulaiti, Adilai]的文章
[Nurmemet, Ilyas]的文章
[Muhetaer, Nuerbiye]的文章
必应学术
必应学术中相似的文章
[Abulaiti, Adilai]的文章
[Nurmemet, Ilyas]的文章
[Muhetaer, Nuerbiye]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。