Arid
DOI10.3390/s22020580
Investigation of Multi-Frequency SAR Data to Retrieve the Soil Moisture within a Drip Irrigation Context Using Modified Water Cloud Model
Ayari, Emna; Kassouk, Zeineb; Lili-Chabaane, Zohra; Baghdadi, Nicolas; Zribi, Mehrez
通讯作者Zribi, M
来源期刊SENSORS
EISSN1424-8220
出版年2022
卷号22期号:2
英文摘要The objective of this paper was to estimate soil moisture in pepper crops with drip irrigation in a semi-arid area in the center of Tunisia using synthetic aperture radar (SAR) data. Within this context, the sensitivity of L-band (ALOS-2) in horizontal-horizontal (HH) and horizontal-vertical (HV) polarizations and C-band (Sentinel-1) data in vertical-vertical (VV) and vertical-horizontal (VH) polarizations is examined as a function of soil moisture and vegetation properties using statistical correlations. SAR signals scattered by pepper-covered fields are simulated with a modified version of the water cloud model using L-HH and C-VV data. In spatially heterogeneous soil moisture cases, the total backscattering is the sum of the bare soil contribution weighted by the proportion of bare soil (one-cover fraction) and the vegetation fraction cover contribution. The vegetation fraction contribution is calculated as the volume scattering contribution of the vegetation and underlying soil components attenuated by the vegetation cover. The underlying soil is divided into irrigated and non-irrigated parts owing to the presence of drip irrigation, thus generating different levels of moisture underneath vegetation. Based on signal sensitivity results, the potential of L-HH data to retrieve soil moisture is demonstrated. L-HV data exhibit a higher potential to retrieve vegetation properties regarding a lower potential for soil moisture estimation. After calibration and validation of the proposed model, various simulations are performed to assess the model behavior patterns under different conditions of soil moisture and pepper biophysical properties. The results highlight the potential of the proposed model to simulate a radar signal over heterogeneous soil moisture fields using L-HH and C-VV data.
英文关键词ALOS-2 Sentinel-1 soilmoisture rowvegetation modifiedwater cloudmodel drip irrigation
类型Article
语种英语
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000920072100008
WOS关键词INTEGRAL-EQUATION MODEL ; C-BAND ; SEMIEMPIRICAL CALIBRATION ; RADAR DATA ; BACKSCATTERING COEFFICIENT ; TERRASAR-X ; VEGETATION ; PARAMETERS ; SURFACE ; SENTINEL-1
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/394479
推荐引用方式
GB/T 7714
Ayari, Emna,Kassouk, Zeineb,Lili-Chabaane, Zohra,et al. Investigation of Multi-Frequency SAR Data to Retrieve the Soil Moisture within a Drip Irrigation Context Using Modified Water Cloud Model[J],2022,22(2).
APA Ayari, Emna,Kassouk, Zeineb,Lili-Chabaane, Zohra,Baghdadi, Nicolas,&Zribi, Mehrez.(2022).Investigation of Multi-Frequency SAR Data to Retrieve the Soil Moisture within a Drip Irrigation Context Using Modified Water Cloud Model.SENSORS,22(2).
MLA Ayari, Emna,et al."Investigation of Multi-Frequency SAR Data to Retrieve the Soil Moisture within a Drip Irrigation Context Using Modified Water Cloud Model".SENSORS 22.2(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ayari, Emna]的文章
[Kassouk, Zeineb]的文章
[Lili-Chabaane, Zohra]的文章
百度学术
百度学术中相似的文章
[Ayari, Emna]的文章
[Kassouk, Zeineb]的文章
[Lili-Chabaane, Zohra]的文章
必应学术
必应学术中相似的文章
[Ayari, Emna]的文章
[Kassouk, Zeineb]的文章
[Lili-Chabaane, Zohra]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。