Arid
DOI10.3390/rs14225653
Accessible Remote Sensing Data Mining Based Dew Estimation
Suo, Ying; Wang, Zhongjing; Zhang, Zixiong; Fassnacht, Steven R.
通讯作者Wang, ZJ
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2022
卷号14期号:22
英文摘要Dew has been considered a supplementary water resource as it constitutes an important water supply in many ecosystems, especially in arid and semiarid areas. Remote sensing allows large-scale surface observations, offering the possibility to estimate dew in such arid and semiarid regions. In this study, by screening and combining different remote sensing variables, we obtained a well-performing monthly scale dew yield estimation model based on the support vector machine (SVM) learning method. Using daytime and nighttime land surface temperatures (LST), the normalized difference vegetation index (NDVI), and three emissivity bands (3.929-3.989 mu m, 10.780-11.280 mu m, and 11.770-12.270 mu m) as the model inputs, the simulated site-scale monthly dew yield achieved a correlation coefficient (CC) of 0.89 and a root mean square error (RMSE) of 0.30 (mm) for the training set, and CC = 0.59 and RMSE = 0.55 (mm) for the test set. Applying the model to the Heihe River Basin (HRB), the results showed that the annual dew yield ranged from 8.83 to 20.28 mm/year, accounting for 2.12 to 66.88% of the total precipitation, with 74.81% of the area having an annual dew amount of 16 to 19 mm/year. We expanded the model application to Northwest China and obtained a dew yield of 5 similar to 30 mm/year from 2011 to 2020, indicating that dew is a non-negligible part of the water balance in this arid area. As a non-negligible part of the water cycle, the use of remote sensing to estimate dew can provide better support for future water resource assessment and analysis.
英文关键词dew estimation machine learning remote sensing Northwest China
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000887783600001
WOS关键词WATER-VAPOR ; EDDY-COVARIANCE ; RIVER-BASIN ; DESERT ; ECOSYSTEM ; BALANCE ; EVAPORATION ; EVAPOTRANSPIRATION ; CONDENSATION ; REFLECTANCE
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/394237
推荐引用方式
GB/T 7714
Suo, Ying,Wang, Zhongjing,Zhang, Zixiong,et al. Accessible Remote Sensing Data Mining Based Dew Estimation[J],2022,14(22).
APA Suo, Ying,Wang, Zhongjing,Zhang, Zixiong,&Fassnacht, Steven R..(2022).Accessible Remote Sensing Data Mining Based Dew Estimation.REMOTE SENSING,14(22).
MLA Suo, Ying,et al."Accessible Remote Sensing Data Mining Based Dew Estimation".REMOTE SENSING 14.22(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Suo, Ying]的文章
[Wang, Zhongjing]的文章
[Zhang, Zixiong]的文章
百度学术
百度学术中相似的文章
[Suo, Ying]的文章
[Wang, Zhongjing]的文章
[Zhang, Zixiong]的文章
必应学术
必应学术中相似的文章
[Suo, Ying]的文章
[Wang, Zhongjing]的文章
[Zhang, Zixiong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。