Arid
DOI10.3390/rs14184491
Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery
Dehkordi, Alireza Taheri; Zoej, Mohammad Javad Valadan; Ghasemi, Hani; Jafari, Mohsen; Mehran, Ali
通讯作者Mehran, A
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2022
卷号14期号:18
英文摘要Within water resources management, surface water area (SWA) variation plays a vital role in hydrological processes as well as in agriculture, environmental ecosystems, and ecological processes. The monitoring of long-term spatiotemporal SWA changes is even more critical within highly populated regions that have an arid or semi-arid climate, such as Iran. This paper examined variations in SWA in Iran from 1990 to 2021 using about 18,000 Landsat 5, 7, and 8 satellite images through the Google Earth Engine (GEE) cloud processing platform. To this end, the performance of twelve water mapping rules (WMRs) within remotely-sensed imagery was also evaluated. Our findings revealed that (1) methods which provide a higher separation (derived from transformed divergence (TD) and Jefferies-Matusita (JM) distances) between the two target classes (water and non-water) result in higher classification accuracy (overall accuracy (OA) and user accuracy (UA) of each class). (2) Near-infrared (NIR)-based WMRs are more accurate than short-wave infrared (SWIR)-based methods for arid regions. (3) The SWA in Iran has an overall downward trend (observed by linear regression (LR) and sequential Mann-Kendall (SQMK) tests). (4) Of the five major water basins, only the Persian Gulf Basin had an upward trend. (5) While temperature has trended upward, the precipitation and normalized difference vegetation index (NDVI), a measure of the country's greenness, have experienced a downward trend. (6) Precipitation showed the highest correlation with changes in SWA (r = 0.69). (7) Long-term changes in SWA were highly correlated (r = 0.98) with variations in the JRC world water map.
英文关键词remote sensing Google Earth Engine surface water area surface water dynamics surface water variations water scarcity Iran Landsat
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000858870900001
WOS关键词CAP TRANSFORMATION ; INDEX NDWI ; DIFFERENCE ; DYNAMICS ; LAKE ; TM ; SENTINEL-2 ; BODY ; DERIVATION ; MANAGEMENT
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/394199
推荐引用方式
GB/T 7714
Dehkordi, Alireza Taheri,Zoej, Mohammad Javad Valadan,Ghasemi, Hani,et al. Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery[J],2022,14(18).
APA Dehkordi, Alireza Taheri,Zoej, Mohammad Javad Valadan,Ghasemi, Hani,Jafari, Mohsen,&Mehran, Ali.(2022).Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery.REMOTE SENSING,14(18).
MLA Dehkordi, Alireza Taheri,et al."Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery".REMOTE SENSING 14.18(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dehkordi, Alireza Taheri]的文章
[Zoej, Mohammad Javad Valadan]的文章
[Ghasemi, Hani]的文章
百度学术
百度学术中相似的文章
[Dehkordi, Alireza Taheri]的文章
[Zoej, Mohammad Javad Valadan]的文章
[Ghasemi, Hani]的文章
必应学术
必应学术中相似的文章
[Dehkordi, Alireza Taheri]的文章
[Zoej, Mohammad Javad Valadan]的文章
[Ghasemi, Hani]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。