Arid
DOI10.3390/rs14122896
Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species
Norton, Cynthia L.; Hartfield, Kyle; Collins, Chandra D. Holifield; van Leeuwen, Willem J. D.; Metz, Loretta J.
通讯作者Norton, CL
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2022
卷号14期号:12
英文摘要Mapping the spatial distribution of woody vegetation is important for monitoring, managing, and studying woody encroachment in grasslands. However, in semi-arid regions, remotely sensed discrimination of tree species is difficult primarily due to the tree similarities, small and sparse canopy cover, but may also be due to overlapping woody canopies as well as seasonal leaf retention (deciduous versus evergreen) characteristics. Similar studies in different biomes have achieved low accuracies using coarse spatial resolution image data. The objective of this study was to investigate the use of multi-temporal, airborne hyperspectral imagery and light detection and ranging (LiDAR) derived data for tree species classification in a semi-arid desert region. This study produces highly accurate classifications by combining multi-temporal fine spatial resolution hyperspectral and LiDAR data (similar to 1 m) through a reproducible scripting and machine learning approach that can be applied to larger areas and similar datasets. Combining multi-temporal vegetation indices and canopy height models led to an overall accuracy of 95.28% and kappa of 94.17%. Five woody species were discriminated resulting in producer accuracies ranging from 86.12% to 98.38%. The influence of fusing spectral and structural information in a random forest classifier for tree identification is evident. Additionally, a multi-temporal dataset slightly increases classification accuracies over a single data collection. Our results show a promising methodology for tree species classification in a semi-arid region using multi-temporal hyperspectral and LiDAR remote sensing data.
英文关键词hyperspectral LiDAR species classification semi-arid
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000815949800001
WOS关键词RANDOM FOREST CLASSIFIER ; WATER-STRESS DETECTION ; IMAGING SPECTROSCOPY ; SHRUB ENCROACHMENT ; CARBON SINK ; VEGETATION ; IMAGERY ; INDEXES ; REFLECTANCE ; DESERT
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/394152
推荐引用方式
GB/T 7714
Norton, Cynthia L.,Hartfield, Kyle,Collins, Chandra D. Holifield,et al. Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species[J],2022,14(12).
APA Norton, Cynthia L.,Hartfield, Kyle,Collins, Chandra D. Holifield,van Leeuwen, Willem J. D.,&Metz, Loretta J..(2022).Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species.REMOTE SENSING,14(12).
MLA Norton, Cynthia L.,et al."Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species".REMOTE SENSING 14.12(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Norton, Cynthia L.]的文章
[Hartfield, Kyle]的文章
[Collins, Chandra D. Holifield]的文章
百度学术
百度学术中相似的文章
[Norton, Cynthia L.]的文章
[Hartfield, Kyle]的文章
[Collins, Chandra D. Holifield]的文章
必应学术
必应学术中相似的文章
[Norton, Cynthia L.]的文章
[Hartfield, Kyle]的文章
[Collins, Chandra D. Holifield]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。