Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs14071701 |
A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series | |
Sun, Qiangqiang; Zhang, Ping; Jiao, Xin; Lun, Fei; Dong, Shiwei; Lin, Xin; Li, Xiangyu; Sun, Danfeng | |
通讯作者 | Sun, DF |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2022 |
卷号 | 14期号:7 |
英文摘要 | Soil organic matter (SOM) plays pivotal roles in characterizing dryland structure and function; however, remotely sensed spatially-detailed SOM mapping in these regions remains a challenge. Various digital soil mapping approaches based on either single-period remote sensing or spectral indices in other ecosystems usually produce inaccurate, poorly constrained estimates of dryland SOM. Here, a framework for spatially-detailed SOM mapping was proposed based on cross-wavelet transform (XWT) that exploits ecologically meaningful features from intra-annual fractional vegetation and soil-related endmember records. In this framework, paired green vegetation (GV) and soil-related endmembers (i.e., dark surface (DA), saline land (SA), sand land (SL)) sequences were adopted to extract 30 XWT features in temporally and spatially continuous domains of cross-wavelet spectrum. We then selected representative features as exploratory covariates for SOM mapping, integrated with four state-of-the-art machine learning approaches, i.e., ridge regression (RR), least squares-support vector machines (LS-SVM), random forests (RF), and gradient boosted regression trees (GBRT). The results reported that SOM maps from 13 coupled filtered XWT features and four machine learning approaches were consistent with soil-landscape knowledge, as evidenced by a spatially-detailed gradient from oasis to barren. This framework also presented more accurate and reliable results than arithmetically averaged features of intra-annual endmembers and existing datasets. Among the four approaches, both RF and GBRT were more appropriate in the XWT-based framework, showing superior accuracy, robustness, and lower uncertainty. The XWT synthetically characterized soil fertility from the consecutive structure of intra-annual vegetation and soil-related endmember sequences. Therefore, the proposed framework improved the understanding of SOM and land degradation neutrality, potentially leading to more sustainable management of dryland systems. |
英文关键词 | soil organic matter dryland systems cross-wavelet transform endmember fraction time series |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000781129800001 |
WOS关键词 | NET PRIMARY PRODUCTION ; MINQIN COUNTY ; CLIMATE-CHANGE ; CARBON ; PREDICTION ; DESERTIFICATION ; LAND ; UNCERTAINTY ; ACCURACY ; DYNAMICS |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/394129 |
推荐引用方式 GB/T 7714 | Sun, Qiangqiang,Zhang, Ping,Jiao, Xin,et al. A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series[J],2022,14(7). |
APA | Sun, Qiangqiang.,Zhang, Ping.,Jiao, Xin.,Lun, Fei.,Dong, Shiwei.,...&Sun, Danfeng.(2022).A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series.REMOTE SENSING,14(7). |
MLA | Sun, Qiangqiang,et al."A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series".REMOTE SENSING 14.7(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。