Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/plants11131654 |
From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity | |
Koyro, Hans-Werner; Huchzermeyer, Bernhard | |
通讯作者 | Koyro, HW |
来源期刊 | PLANTS-BASEL
![]() |
ISSN | 2223-7747 |
出版年 | 2022 |
卷号 | 11期号:13 |
英文摘要 | Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food-soil-climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant-soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth promoting bacteria (PGPB) at improving nutrient supply to plants. In this review, our focus is on the interplay of both soil amendments on primary reactions of photosynthesis, plant growth conditions, and signaling during adaptation to environmental stress. Moreover, we aim at providing a general overview of how dehydration and salinity affect signaling in cells. With the use of the example of abscisic acid (ABA) and ethylene, we discuss the effects that can be observed when biochar and PGPB are used in the presence of stress. The stress response of plants is a multifactorial trait. Nevertheless, we will show that plants follow a general concept to adapt to unfavorable environmental conditions in the short and long term. However, plant species differ in the upper and lower regulatory limits of gene expression. Therefore, the presented data may help in the identification of traits for future breeding of stress-resistant crops. One target for breeding could be the removal and efficient recycling of damaged as well as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment. |
英文关键词 | water withhold salinity stress amendments biochar plant-microorganism interaction plant growth promoting bacteria (PGPB) hormone auxin ethylene autophagy stress perception and signaling |
类型 | Review |
语种 | 英语 |
开放获取类型 | gold, Green Published |
收录类别 | SCI-E |
WOS记录号 | WOS:000822115100001 |
WOS关键词 | GROWTH-PROMOTING RHIZOBACTERIA ; ABIOTIC STRESS TOLERANCE ; ABSCISIC-ACID ; ACC DEAMINASE ; BIOMASS PRODUCTION ; DROUGHT STRESS ; RHIZOSPHERE MICROBIOME ; OXIDATIVE STRESS ; LYCOPERSICON-ESCULENTUM ; SIGNAL-TRANSDUCTION |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/393996 |
推荐引用方式 GB/T 7714 | Koyro, Hans-Werner,Huchzermeyer, Bernhard. From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity[J],2022,11(13). |
APA | Koyro, Hans-Werner,&Huchzermeyer, Bernhard.(2022).From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity.PLANTS-BASEL,11(13). |
MLA | Koyro, Hans-Werner,et al."From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity".PLANTS-BASEL 11.13(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。