Arid
DOI10.1103/PhysRevE.105.034206
Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models
Consolo, Giancarlo; Curro, Carmela; Grifo, Gabriele; Valenti, Giovanna
通讯作者Consolo, G
来源期刊PHYSICAL REVIEW E
ISSN2470-0045
EISSN2470-0053
出版年2022
卷号105期号:3
英文摘要In this work we consider a quite general class of two-species hyperbolic reaction-advection-diffusion system with the main aim of elucidating the role played by inertial effects in the dynamics of oscillatory periodic patterns. To this aim, first, we use linear stability analysis techniques to deduce the conditions under which wave (or oscillatory Turing) instability takes place. Then, we apply multiple-scale weakly nonlinear analysis to determine the equation which rules the spatiotemporal evolution of pattern amplitude close to criticality. This investigation leads to a cubic complex Ginzburg-Landau (CCGL) equation which, owing to the functional dependence of the coefficients here involved on the inertial times, reveals some intriguing consequences. To show in detail the richness of such a scenario, we present, as an illustrative example, the pattern dynamics occurring in the hyperbolic generalization of the extended Klausmeier model. This is a simple two-species model used to describe the migration of vegetation stripes along the hillslope of semiarid environments. By means of a thorough comparison between analytical predictions and numerical simulations, we show that inertia, apart from enlarging the region of the parameter plane where wave instability occurs, may also modulate the key features of the coherent structures, solution of the CCGL equation. In particular, it is proven that inertial effects play a role, not only during transient regime from the spatially-homogeneous steady state toward the patterned state, but also in altering the amplitude, the wavelength, the angular frequency, and even the stability of the phase-winding solutions.
类型Article
语种英语
开放获取类型hybrid, Green Submitted
收录类别SCI-E
WOS记录号WOS:000788331700010
WOS关键词GINZBURG-LANDAU EQUATION ; BANDED VEGETATION ; KLAUSMEIER MODEL ; IRREVERSIBLE THERMODYNAMICS ; SYSTEMS ; FRONTS ; DESERTIFICATION ; ECOSYSTEMS ; MODULATION ; TRANSITION
WOS类目Physics, Fluids & Plasmas ; Physics, Mathematical
WOS研究方向Physics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393936
推荐引用方式
GB/T 7714
Consolo, Giancarlo,Curro, Carmela,Grifo, Gabriele,et al. Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models[J],2022,105(3).
APA Consolo, Giancarlo,Curro, Carmela,Grifo, Gabriele,&Valenti, Giovanna.(2022).Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models.PHYSICAL REVIEW E,105(3).
MLA Consolo, Giancarlo,et al."Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models".PHYSICAL REVIEW E 105.3(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Consolo, Giancarlo]的文章
[Curro, Carmela]的文章
[Grifo, Gabriele]的文章
百度学术
百度学术中相似的文章
[Consolo, Giancarlo]的文章
[Curro, Carmela]的文章
[Grifo, Gabriele]的文章
必应学术
必应学术中相似的文章
[Consolo, Giancarlo]的文章
[Curro, Carmela]的文章
[Grifo, Gabriele]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。