Arid
DOI10.1016/j.nicl.2022.102993
Predicting diagnosis 4 years prior to Alzheimer's disease incident
Qiu, Anqi; Xu, Liyuan; Liu, Chaoqiang; Alzheimer's Disease Neuroimaging Initiative
通讯作者Qiu, AQ
来源期刊NEUROIMAGE-CLINICAL
ISSN2213-1582
出版年2022
卷号34
英文摘要This study employed a deep learning longitudinal model, graph convolutional and recurrent neural network (graph-CNN-RNN), on a series of brain structural MRI scans for AD prognosis. It characterized whole-brain morphology via incorporating longitudinal cortical and subcortical morphology and defined a probabilistic risk for the prediction of AD as a function of age prior to clinical diagnosis. The graph-CNN-RNN model was trained on half of the Alzheimer's Disease Neuroimaging Initiative dataset (ADNI, n = 1559) and validated on the other half of the ADNI dataset and the Open Access Series of Imaging Studies-3 (OASIS-3, n = 930). Our findings demonstrated that the graph-CNN-RNN can reliably and robustly diagnose AD at the accuracy rate of 85% and above across all the time points for both datasets. The graph-CNN-RNN predicted the AD conversion from 0 to 4 years before the AD onset at similar to 80% of accuracy. The AD probabilistic risk was associated with clinical traits, cognition, and amyloid burden assessed using [18F]-Florbetapir (AV45) positron emission tomography (PET) across all the time points. The graph-CNN-RNN provided the quantitative trajectory of brain morphology from prognosis to overt stages of AD. Such a deep learning tool and the AD probabilistic risk have great potential in clinical applications for AD prognosis.
英文关键词Brain morphology Recurrent neural network Graph convolutional neural network Amyloid burden Structural magnetic resonance imaging Cognition
类型Article
语种英语
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000790409500006
WOS关键词MILD COGNITIVE IMPAIRMENT ; GRAY-MATTER ; MRI ; CONVERSION ; DEMENTIA ; NETWORK ; ATROPHY ; MCI
WOS类目Neuroimaging
WOS研究方向Neurosciences & Neurology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393865
推荐引用方式
GB/T 7714
Qiu, Anqi,Xu, Liyuan,Liu, Chaoqiang,et al. Predicting diagnosis 4 years prior to Alzheimer's disease incident[J],2022,34.
APA Qiu, Anqi,Xu, Liyuan,Liu, Chaoqiang,&Alzheimer's Disease Neuroimaging Initiative.(2022).Predicting diagnosis 4 years prior to Alzheimer's disease incident.NEUROIMAGE-CLINICAL,34.
MLA Qiu, Anqi,et al."Predicting diagnosis 4 years prior to Alzheimer's disease incident".NEUROIMAGE-CLINICAL 34(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiu, Anqi]的文章
[Xu, Liyuan]的文章
[Liu, Chaoqiang]的文章
百度学术
百度学术中相似的文章
[Qiu, Anqi]的文章
[Xu, Liyuan]的文章
[Liu, Chaoqiang]的文章
必应学术
必应学术中相似的文章
[Qiu, Anqi]的文章
[Xu, Liyuan]的文章
[Liu, Chaoqiang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。