Arid
DOI10.1016/j.neuroimage.2022.119703
CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation
Faber, Jennifer; Kuegler, David; Bahrami, Emad; Heinz, Lea-Sophie; Timmann, Dagmar; Ernst, Thomas M.; Deike-Hofmann, Katerina; Klockgether, Thomas; van de Warrenburg, Bart; van Gaalen, Judith; Reetz, Kathrin; Romanzetti, Sandro; Oz, Gulin; Joers, James M.; Diedrichsen, Jorn; Reuter, Martin
通讯作者Reuter, M
来源期刊NEUROIMAGE
ISSN1053-8119
EISSN1095-9572
出版年2022
卷号264
英文摘要Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces CerebNet, a fully automated, extensively validated, deep learning method for the lobular segmentation of the cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well as cerebellar white matter. CerebNet combines FastSurferCNN, a UNet-based 2.5D segmentation network, with extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC > 0 . 97 on OASIS and Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing cerebellum sub-structure volumes. We make CerebNet available as source-code ( https://github.com/Deep-MI/ FastSurfer ).
英文关键词CerebNet Cerebellum Computational neuroimaging Deep learning
类型Article
语种英语
开放获取类型Green Published, gold
收录类别SCI-E
WOS记录号WOS:000884469600009
WOS关键词OPEN ACCESS SERIES ; OPTIMIZED PATCHMATCH ; LOBULE SEGMENTATION ; MRI DATA ; VOLUMES ; ATAXIA ; ATLAS ; REGISTRATION ; ORGANIZATION ; TEMPLATE
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393864
推荐引用方式
GB/T 7714
Faber, Jennifer,Kuegler, David,Bahrami, Emad,et al. CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation[J],2022,264.
APA Faber, Jennifer.,Kuegler, David.,Bahrami, Emad.,Heinz, Lea-Sophie.,Timmann, Dagmar.,...&Reuter, Martin.(2022).CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation.NEUROIMAGE,264.
MLA Faber, Jennifer,et al."CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation".NEUROIMAGE 264(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Faber, Jennifer]的文章
[Kuegler, David]的文章
[Bahrami, Emad]的文章
百度学术
百度学术中相似的文章
[Faber, Jennifer]的文章
[Kuegler, David]的文章
[Bahrami, Emad]的文章
必应学术
必应学术中相似的文章
[Faber, Jennifer]的文章
[Kuegler, David]的文章
[Bahrami, Emad]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。