Arid
DOI10.1016/j.neurobiolaging.2022.06.008
Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging
Vieira, Bruno Hebling; Liem, Franziskus; Dadi, Kamalaker; Engemann, Denis A.; Gramfort, Alexandre; Bellec, Pierre; Craddock, Richard Cameron; Damoiseaux, Jessica S.; Steele, Christopher J.; Yarkoni, Tal; Langer, Nicolas; Margulies, Daniel S.; Varoquaux, Gael
通讯作者Vieira, BH
来源期刊NEUROBIOLOGY OF AGING
ISSN0197-4580
EISSN1558-1497
出版年2022
卷号118页码:55-65
英文摘要Previous literature has focused on predicting a diagnostic label from structural brain imaging. Since subtle changes in the brain precede a cognitive decline in healthy and pathological aging, our study predicts fu-ture decline as a continuous trajectory instead. Here, we tested whether baseline multimodal neuroimag-ing data improve the prediction of future cognitive decline in healthy and pathological aging. Nonbrain data (demographics, clinical, and neuropsychological scores), structural MRI, and functional connectivity data from OASIS-3 (N = 662; age = 46-96 years) were entered into cross-validated multitarget random forest models to predict future cognitive decline (measured by CDR and MMSE), on average 5.8 years into the future. The analysis was preregistered, and all analysis code is publicly available. Combining non-brain with structural data improved the continuous prediction of future cognitive decline (best test -set performance: R2 = 0.42). Cognitive performance, daily functioning, and subcortical volume drove the performance of our model. Including functional connectivity did not improve predictive accuracy. In the future, the prognosis of age-related cognitive decline may enable earlier and more effective individualized cognitive, pharmacological, and behavioral interventions. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
英文关键词Biomarker Machine learning Predictive modeling Open science Cross-validation
类型Article
语种英语
开放获取类型Green Submitted, hybrid, Green Published, Green Accepted
收录类别SCI-E
WOS记录号WOS:000874880700001
WOS关键词DATA SET UDS ; ALZHEIMERS-DISEASE ; CLASSIFICATION ; BIOMARKERS ; HIPPOCAMPUS ; VALIDATION ; REGRESSION ; DEMENTIA ; CAPTURES ; SCORES
WOS类目Geriatrics & Gerontology ; Neurosciences
WOS研究方向Geriatrics & Gerontology ; Neurosciences & Neurology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393860
推荐引用方式
GB/T 7714
Vieira, Bruno Hebling,Liem, Franziskus,Dadi, Kamalaker,et al. Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging[J],2022,118:55-65.
APA Vieira, Bruno Hebling.,Liem, Franziskus.,Dadi, Kamalaker.,Engemann, Denis A..,Gramfort, Alexandre.,...&Varoquaux, Gael.(2022).Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging.NEUROBIOLOGY OF AGING,118,55-65.
MLA Vieira, Bruno Hebling,et al."Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging".NEUROBIOLOGY OF AGING 118(2022):55-65.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Vieira, Bruno Hebling]的文章
[Liem, Franziskus]的文章
[Dadi, Kamalaker]的文章
百度学术
百度学术中相似的文章
[Vieira, Bruno Hebling]的文章
[Liem, Franziskus]的文章
[Dadi, Kamalaker]的文章
必应学术
必应学术中相似的文章
[Vieira, Bruno Hebling]的文章
[Liem, Franziskus]的文章
[Dadi, Kamalaker]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。