Arid
DOI10.1016/j.ejrh.2022.101259
Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison with empirical approaches and machine learning models
Abdallah, Mohammed; Mohammadi, Babak; Zaroug, Modathir A. H.; Omer, Abubaker; Cheraghalizadeh, Majid; Eldow, Mohamed E. E.; Duan, Zheng
通讯作者Mohammadi, B
来源期刊JOURNAL OF HYDROLOGY-REGIONAL STUDIES
EISSN2214-5818
出版年2022
卷号44
英文摘要Study region: Two hyper-arid regions (Atbara and Kassala stations) in Sudan. Study focus: The study aims to evaluate the potential of the D-vine Copula-based quantile regression (DVQR) model for estimating daily ETo during 2000-2015 based on various input structures. Further, the DVQR model was compared with Multivariate Linear quantile regression (MLQR), Bayesians Model Averaging quantile regression (BMAQR), Empirical Models (EMMs), and Classical Machine Learning (CML). Besides, the CML models including Random Forest (RF), Support Vector Machine (SVM), Extreme Learning Machine (ELM), Extreme Gradient Boosting (XGBoost), and M5 Model Tree (M5Tree) were employed. New hydrological insights for the region: The original EMMs showed poor performance, which improved after calibration techniques. The DVQR, MLQR, and BMAQR models showed better performance than the calibrated EMMs. However, the DVQR model exhibited the highest accu-racy than the MLQR and BMAQR models over two study sites. The M5Tree, SVM, and XGBoost models perfumed better than ELM and RF models at both study sites. The DVQR and XGBoost models showed equivalent performance (R-2, NSE, and WIA > 0.99, MAE, and RMSE < 0.2) to the M5Tree and SVM models, but they had significantly more accuracy than the calibrated EMMs, MLQR, BMAQR, ELM, and RF models in two hyper-arid regions. Overall, the high dimensional DVQR model is recommended as a promising alternative technique for estimating daily ETo in hyper-arid climate conditions around the world.
英文关键词Reference evapotranspiration Empirical models Quantile regression Machine learning Sudan Hyper -arid region
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000891433200002
WOS关键词LIMITED CLIMATIC DATA ; CROP EVAPOTRANSPIRATION ; METEOROLOGICAL DATA ; RANDOM FORESTS ; PREDICTION ; EQUATIONS ; SVM ; COMBINATION ; NORTHWEST ; ACCURACY
WOS类目Water Resources
WOS研究方向Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393530
推荐引用方式
GB/T 7714
Abdallah, Mohammed,Mohammadi, Babak,Zaroug, Modathir A. H.,et al. Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison with empirical approaches and machine learning models[J],2022,44.
APA Abdallah, Mohammed.,Mohammadi, Babak.,Zaroug, Modathir A. H..,Omer, Abubaker.,Cheraghalizadeh, Majid.,...&Duan, Zheng.(2022).Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison with empirical approaches and machine learning models.JOURNAL OF HYDROLOGY-REGIONAL STUDIES,44.
MLA Abdallah, Mohammed,et al."Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison with empirical approaches and machine learning models".JOURNAL OF HYDROLOGY-REGIONAL STUDIES 44(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abdallah, Mohammed]的文章
[Mohammadi, Babak]的文章
[Zaroug, Modathir A. H.]的文章
百度学术
百度学术中相似的文章
[Abdallah, Mohammed]的文章
[Mohammadi, Babak]的文章
[Zaroug, Modathir A. H.]的文章
必应学术
必应学术中相似的文章
[Abdallah, Mohammed]的文章
[Mohammadi, Babak]的文章
[Zaroug, Modathir A. H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。