Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.jaap.2022.105693 |
Customized biochar for soil applications in arid land: Effect of feedstock type and pyrolysis temperature on soil microbial enumeration and respiration | |
Al-Rabaiai, Ahmed; Menezes-Blackburn, Daniel; Al-Ismaily, Said; Janke, Rhonda; Pracejus, Bernhard; Al-Alawi, Ahmed; Al-Kindi, Mohamed; Bol, Roland | |
通讯作者 | Menezes-Blackburn, D |
来源期刊 | JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
![]() |
ISSN | 0165-2370 |
EISSN | 1873-250X |
出版年 | 2022 |
卷号 | 168 |
英文摘要 | Biochar is rapidly gaining worldwide interest as an agro-technology for increasing soil health and carbon storage. This study investigated the physicochemical characteristics and impact on soil microbes of biochar amendments from three feedstock sources: date palm leaves (D), mesquite plants (M) and sludge compost (S.C.); pyrolyzed at 450?, 600 ? and 750 ?. Scanning electron microscopy images showed an apparent pore size increase with increasing pyrolysis temperature. The increase in pyrolysis temperature decreased O-H and C-O bonds and increased the proportion of C-C bonds, as obtained from the Fourier transform infrared spectroscopy studies. Thermostability was highest at a pyrolysis temperature of 750 ?, with distinct thermal decomposition profiles for each of the three feedstock materials used, as indicated by the dynamic thermal gravimetric analysis. The SC biochars showed the highest mineral content (45-66%) with significantly higher water-soluble and total concentrations of mineral elements. The SC samples also showed the presence of possible soil contaminants such as Pb and As, and its use as a soil amendment is not recommended, even though the SC at 450 ? was the only nonalkaline biochar in this study. The M feedstock produced biochar with the highest surface area (600 m(2) g(-1)) and carbon content based on loss on ignition (94.98%); nevertheless, the M biochar reduced soil microbial enumeration and respiration. This reduction increased with increasing pyrolysis temperature. Therefore, the M biochar feedstocks are not recommended for improving soil health and may be tested in the future as a microbial inhibitor for soil-borne plant pathogens. Considering the physicochemical properties and the biochar impact on soil, D at 600 ? was the best biochar selected for further studies as a soil amendment. The large differences in biochar physicochemical properties and their effect on soil microbes observed in this study suggest that the feedstock type and pyrolysis temperatures must be considered during biochar amendment production for improving soil health in arid-land agroecosystems. |
英文关键词 | Soil health Biochar pyrolysis Organic waste Feedstock quality Mesquite trees |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:000861803700003 |
WOS关键词 | CARBON STABILITY ; SLOW PYROLYSIS ; PLANT BIOMASS ; ORGANIC WASTE ; SURFACE-AREA ; BY-PRODUCTS ; ADSORPTION ; SLUDGE ; VALORIZATION ; AGRICULTURE |
WOS类目 | Chemistry, Analytical ; Energy & Fuels ; Engineering, Chemical |
WOS研究方向 | Chemistry ; Energy & Fuels ; Engineering |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/393278 |
推荐引用方式 GB/T 7714 | Al-Rabaiai, Ahmed,Menezes-Blackburn, Daniel,Al-Ismaily, Said,et al. Customized biochar for soil applications in arid land: Effect of feedstock type and pyrolysis temperature on soil microbial enumeration and respiration[J],2022,168. |
APA | Al-Rabaiai, Ahmed.,Menezes-Blackburn, Daniel.,Al-Ismaily, Said.,Janke, Rhonda.,Pracejus, Bernhard.,...&Bol, Roland.(2022).Customized biochar for soil applications in arid land: Effect of feedstock type and pyrolysis temperature on soil microbial enumeration and respiration.JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS,168. |
MLA | Al-Rabaiai, Ahmed,et al."Customized biochar for soil applications in arid land: Effect of feedstock type and pyrolysis temperature on soil microbial enumeration and respiration".JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 168(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。