Arid
DOI10.1016/j.jag.2022.102839
Using spatiotemporal fusion algorithms to fill in potentially absent satellite images for calculating soil salinity: A feasibility study
Han, Lijing; Ding, Jianli; Ge, Xiangyu; He, Baozhong; Wang, Jinjie; Xie, Boqiang; Zhang, Zipeng
通讯作者Ding, JL
来源期刊INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
ISSN1569-8432
EISSN1872-826X
出版年2022
卷号111
英文摘要Currently, remote sensing technology has unique advantages in monitoring soil salinity information, but it is vulnerable to the quality of imaging, and spatiotemporal fusion algorithms can fill these missing images. The purpose of this study is to evaluate the applicability of four commonly used spatiotemporal fusion algorithms for monitoring soil salinity. The applicability of four spatiotemporal fusion techniques for generating fused images based on Landsat 8 and Sentinel-2 data was examined. To estimate soil salinity in the oasis intersection zone region of Xinjiang, China, random forest regression models were built using measured soil salinity and multiple fused images. The results show that the spatiotemporal fusion algorithm can generate fused images with good accuracy and the constructed random forest regression model can assess soil salinity well. We conclude that using a spatiotemporal fusion technique to generate fused pictures can solve the missing data problem caused by poor imaging quality, and that the fused images are well suited for monitoring soil parameters sensitive to environmental changes, such as soil salinity. One of the key influencing variables on the accuracy of the developed assessment model is the correctness of the fused images. When dealing with incomplete data, this work can serve as a scientific reference for monitoring soil salinity utilizing remote sensing methods.
英文关键词Spatiotemporal fusion Soil salinity Soil remote sensing monitoring Missing image data
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000813495500001
WOS关键词REFLECTANCE FUSION ; CLIMATE-CHANGE ; LANDSAT ; RESOLUTION ; SCALE ; DYNAMICS ; MODEL ; LAKE
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393117
推荐引用方式
GB/T 7714
Han, Lijing,Ding, Jianli,Ge, Xiangyu,et al. Using spatiotemporal fusion algorithms to fill in potentially absent satellite images for calculating soil salinity: A feasibility study[J],2022,111.
APA Han, Lijing.,Ding, Jianli.,Ge, Xiangyu.,He, Baozhong.,Wang, Jinjie.,...&Zhang, Zipeng.(2022).Using spatiotemporal fusion algorithms to fill in potentially absent satellite images for calculating soil salinity: A feasibility study.INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,111.
MLA Han, Lijing,et al."Using spatiotemporal fusion algorithms to fill in potentially absent satellite images for calculating soil salinity: A feasibility study".INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 111(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Han, Lijing]的文章
[Ding, Jianli]的文章
[Ge, Xiangyu]的文章
百度学术
百度学术中相似的文章
[Han, Lijing]的文章
[Ding, Jianli]的文章
[Ge, Xiangyu]的文章
必应学术
必应学术中相似的文章
[Han, Lijing]的文章
[Ding, Jianli]的文章
[Ge, Xiangyu]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。