Arid
DOI10.1109/ACCESS.2022.3175188
A Squeeze U-SegNet Architecture Based on Residual Convolution for Brain MRI Segmentation
Dayananda, Chaitra; Choi, Jae Young; Lee, Bumshik
通讯作者Lee, B
来源期刊IEEE ACCESS
ISSN2169-3536
出版年2022
卷号10页码:52804-52817
英文摘要This paper proposes an improved brain magnetic resonance imaging (MRI) segmentation model by integrating U-SegNet with fire modules and residual convolutions to segment brain tissues in MRI. In the proposed encoder-decoder method, the residual connections and squeeze-expand convolutional layers from the fire module lead to a lighter and more efficient architecture for brain MRI segmentation. The residual unit helps in the smooth training of the deep architecture, and features obtained from residual convolutions exhibit a superior representation of the features in the segmentation network. In addition, the method provides a design with more efficient architecture, fewer network parameters, and better segmentation accuracy for brain MRI. The proposed architecture was evaluated on publicly available open access series of imaging studies (OASIS) and internet brain segmentation repository (IBSR) datasets for brain tissue segmentation. The experimental results showed superior performance compared to other state-of-the-art methods on brain MRI segmentation with a dice similarity coefficient (DSC) score of 0.96 and Jaccard index (JI) of 0.92.
英文关键词Image segmentation Magnetic resonance imaging Decoding Computer architecture Convolutional neural networks Convolution Computational modeling Brain tissue residual connection fire module magnetic resonance imaging
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000803533800001
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS研究方向Computer Science ; Engineering ; Telecommunications
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393067
推荐引用方式
GB/T 7714
Dayananda, Chaitra,Choi, Jae Young,Lee, Bumshik. A Squeeze U-SegNet Architecture Based on Residual Convolution for Brain MRI Segmentation[J],2022,10:52804-52817.
APA Dayananda, Chaitra,Choi, Jae Young,&Lee, Bumshik.(2022).A Squeeze U-SegNet Architecture Based on Residual Convolution for Brain MRI Segmentation.IEEE ACCESS,10,52804-52817.
MLA Dayananda, Chaitra,et al."A Squeeze U-SegNet Architecture Based on Residual Convolution for Brain MRI Segmentation".IEEE ACCESS 10(2022):52804-52817.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dayananda, Chaitra]的文章
[Choi, Jae Young]的文章
[Lee, Bumshik]的文章
百度学术
百度学术中相似的文章
[Dayananda, Chaitra]的文章
[Choi, Jae Young]的文章
[Lee, Bumshik]的文章
必应学术
必应学术中相似的文章
[Dayananda, Chaitra]的文章
[Choi, Jae Young]的文章
[Lee, Bumshik]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。