Arid
DOI10.2166/nh.2022.115
Improving BP artificial neural network model to predict the SPI in arid regions: a case study in Northern Shaanxi, China
Li Shaoxuan; Xie Jiancang; Yang Xue; Xue Ruihua; Zhao Peiyuan
通讯作者Yang, X
来源期刊HYDROLOGY RESEARCH
ISSN1998-9563
EISSN2224-7955
出版年2022
卷号53期号:3页码:419-440
英文摘要Drought prediction plays an important guiding role in drought risk management. The standardized precipitation index (SPI) is a popular meteorological drought indicator to measure the degree of drought. The SPI time series is non-stationary, whereas the conventional artificial neural network (ANN) model has limitations to predict non-stationary time series. To overcome this limitation, it is essential to investigate input data preprocessing to improve the ANN model. In this paper, a hybrid model coupled with singular spectrum analysis (SSA) and backpropagation ANN is proposed (SSA-BP-ANN). The advantage of this model is that the SSA of finite-length SPI sequences does not require the adoption of boundary extensions to suppress boundary effects, while the most predictable components of the SPI can be efficiently extracted and incorporated into the model. The proposed SSA-BP-ANN model is tested in case studies at three meteorological stations in Northern Shannxi Province, China. The results show that the SSA-BP-ANN model can produce more accurate predictions than the BP-ANN model. In addition, the performance improvement of SSA on the BP-ANN model is slightly better than wavelet decomposition and empirical mode decomposition. This new hybrid prediction model has great potential for promoting drought early warning in arid regions.
英文关键词BP artificial neural network data preprocessing decomposition hybrid model singular spectrum analysis
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000780122200005
WOS关键词SINGULAR SPECTRUM ANALYSIS ; SUPPORT VECTOR REGRESSION ; STANDARDIZED PRECIPITATION INDEX ; RIVER-BASIN ; WAVELET TRANSFORM ; DROUGHT ; DECOMPOSITION ; SPEI
WOS类目Water Resources
WOS研究方向Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/393063
推荐引用方式
GB/T 7714
Li Shaoxuan,Xie Jiancang,Yang Xue,et al. Improving BP artificial neural network model to predict the SPI in arid regions: a case study in Northern Shaanxi, China[J],2022,53(3):419-440.
APA Li Shaoxuan,Xie Jiancang,Yang Xue,Xue Ruihua,&Zhao Peiyuan.(2022).Improving BP artificial neural network model to predict the SPI in arid regions: a case study in Northern Shaanxi, China.HYDROLOGY RESEARCH,53(3),419-440.
MLA Li Shaoxuan,et al."Improving BP artificial neural network model to predict the SPI in arid regions: a case study in Northern Shaanxi, China".HYDROLOGY RESEARCH 53.3(2022):419-440.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li Shaoxuan]的文章
[Xie Jiancang]的文章
[Yang Xue]的文章
百度学术
百度学术中相似的文章
[Li Shaoxuan]的文章
[Xie Jiancang]的文章
[Yang Xue]的文章
必应学术
必应学术中相似的文章
[Li Shaoxuan]的文章
[Xie Jiancang]的文章
[Yang Xue]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。