Arid
DOI10.1111/gcbb.13001
Climate mitigation potential and soil microbial response of cyanobacteria-fertilized bioenergy crops in a cool semi-arid cropland
Gay, Justin D.; Goemann, Hannah M.; Currey, Bryce; Stoy, Paul C.; Christiansen, Jesper Riis; Miller, Perry R.; Poulter, Benjamin; Peyton, Brent M.; Brookshire, E. N. Jack
通讯作者Gay, JD
来源期刊GLOBAL CHANGE BIOLOGY BIOENERGY
ISSN1757-1693
EISSN1757-1707
出版年2022
卷号14期号:12页码:1303-1320
英文摘要Bioenergy carbon capture and storage (BECCS) systems can serve as decarbonization pathways for climate mitigation. Perennial grasses are a promising second-generation lignocellulosic bioenergy feedstock for BECCS expansion, but optimizing their sustainability, productivity, and climate mitigation potential requires an evaluation of how nitrogen (N) fertilizer strategies interact with greenhouse gas (GHG) and soil organic carbon (SOC) dynamics. Furthermore, crop and fertilizer choice can affect the soil microbiome which is critical to soil organic matter turnover, nutrient cycling, and sustaining crop productivity but these feedbacks are poorly understood due to the paucity of data from certain agroecosystems. Here, we examine the climate mitigation potential and soil microbiome response to establishing two functionally different perennial grasses, switchgrass (Panicum virgatum, C4) and tall wheatgrass (Thinopyrum ponticum, C3), in a cool semi-arid agroecosystem under two fertilizer applications, a novel cyanobacterial biofertilizer (CBF) and urea. We find that in contrast to the C4 grass, the C3 grass achieved 98% greater productivity and had a higher N use efficiency when fertilized. For both crops, the CBF produced the same biomass enhancement as urea. Non-CO2 GHG fluxes across all treatments were low and we observed a 3-year net loss of SOC under the C4 crop and a net gain under the C3 crop at a 0-30 cm soil depth regardless of fertilization. Finally, we detected crop-specific changes in the soil microbiome, including an increased relative abundance of arbuscular mycorrhizal fungi under the C3, and potentially pathogenic fungi in the C4 grass. Taken together, these findings highlight the potential of CBF-fertilized C3 crops as a second-generation bioenergy feedstock in semi-arid regions as a part of a climate mitigation strategy.
英文关键词biofertilizer greenhouse gas flux microbiome perennial grass second-generation BECCS soil carbon
类型Article
语种英语
开放获取类型Green Published, Green Submitted, gold
收录类别SCI-E
WOS记录号WOS:000870327500001
WOS关键词GREENHOUSE-GAS EMISSIONS ; USE EFFICIENCY ; WATER-USE ; AMMONIA VOLATILIZATION ; CARBON SEQUESTRATION ; PERENNIAL GRASSES ; FUNCTIONAL TYPES ; BIOMASS YIELD ; NO-TILL ; SWITCHGRASS
WOS类目Agronomy ; Biotechnology & Applied Microbiology ; Energy & Fuels
WOS研究方向Agriculture ; Biotechnology & Applied Microbiology ; Energy & Fuels
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392971
推荐引用方式
GB/T 7714
Gay, Justin D.,Goemann, Hannah M.,Currey, Bryce,et al. Climate mitigation potential and soil microbial response of cyanobacteria-fertilized bioenergy crops in a cool semi-arid cropland[J],2022,14(12):1303-1320.
APA Gay, Justin D..,Goemann, Hannah M..,Currey, Bryce.,Stoy, Paul C..,Christiansen, Jesper Riis.,...&Brookshire, E. N. Jack.(2022).Climate mitigation potential and soil microbial response of cyanobacteria-fertilized bioenergy crops in a cool semi-arid cropland.GLOBAL CHANGE BIOLOGY BIOENERGY,14(12),1303-1320.
MLA Gay, Justin D.,et al."Climate mitigation potential and soil microbial response of cyanobacteria-fertilized bioenergy crops in a cool semi-arid cropland".GLOBAL CHANGE BIOLOGY BIOENERGY 14.12(2022):1303-1320.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gay, Justin D.]的文章
[Goemann, Hannah M.]的文章
[Currey, Bryce]的文章
百度学术
百度学术中相似的文章
[Gay, Justin D.]的文章
[Goemann, Hannah M.]的文章
[Currey, Bryce]的文章
必应学术
必应学术中相似的文章
[Gay, Justin D.]的文章
[Goemann, Hannah M.]的文章
[Currey, Bryce]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。