Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1080/10106049.2022.2129818 |
Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context | |
Eloudi, Hasna; Reddad, Hanane; Hssaisoune, Mohammed; Estrany, Joan; Krimissa, Samira; Elaloui, Abdenbi; Namous, Mustapha; Ouatiki, Hamza; Aboutaib, Fatima; Ouayah, Mustapha; Jadoud, Mourad; Edahbi, Mohamed; Bouchaou, Lhoussaine | |
通讯作者 | Eloudi, H |
来源期刊 | GEOCARTO INTERNATIONAL
![]() |
ISSN | 1010-6049 |
EISSN | 1752-0762 |
出版年 | 2022 |
卷号 | 37期号:27页码:17435-17464 |
英文摘要 | Gully erosion is a complex socio-environmental issue that has a negative influence on natural resources and has significant economic costs. This study examined the performance of two ensemble models based on multicriteria decision making (MCDM) analysis, analytic hierarchy process (AHP), weight of evidence (WoE) and random forest (RF) for spatiotemporal monitoring of gully erosion sensitivity (GES) from 1988 to 2019 as well as a projection for 2040 in a semi-arid area. The findings revealed that the vulnerable areas significantly raise between 1988 and 2040 (> 27% of the study area since 2019), in perfect alignment with a rapid deterioration of the vegetation cover (-16%), a general decrease in rainfall (-25% since 2019), and an increase in land surface temperature (LST) average (30 degrees-37 degrees approximatively). Finally, the area under curve (AUC) value revealed a high prediction performance for both developed models (AUC = 0.888 for WoE-RF and 0.886 for MCDM-WoE-AHP). |
英文关键词 | Ensemble of models analytical hierarchy process WoE random forest climate change |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:000870187000001 |
WOS关键词 | LANDSLIDE SUSCEPTIBILITY ; SOIL-EROSION ; DECISION-MAKING ; SEDIMENT YIELD ; HIGH-ATLAS ; VALIDATION ; IMPACTS ; REGION |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/392901 |
推荐引用方式 GB/T 7714 | Eloudi, Hasna,Reddad, Hanane,Hssaisoune, Mohammed,et al. Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context[J],2022,37(27):17435-17464. |
APA | Eloudi, Hasna.,Reddad, Hanane.,Hssaisoune, Mohammed.,Estrany, Joan.,Krimissa, Samira.,...&Bouchaou, Lhoussaine.(2022).Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context.GEOCARTO INTERNATIONAL,37(27),17435-17464. |
MLA | Eloudi, Hasna,et al."Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context".GEOCARTO INTERNATIONAL 37.27(2022):17435-17464. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。