Arid
DOI10.1080/10106049.2022.2129818
Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context
Eloudi, Hasna; Reddad, Hanane; Hssaisoune, Mohammed; Estrany, Joan; Krimissa, Samira; Elaloui, Abdenbi; Namous, Mustapha; Ouatiki, Hamza; Aboutaib, Fatima; Ouayah, Mustapha; Jadoud, Mourad; Edahbi, Mohamed; Bouchaou, Lhoussaine
通讯作者Eloudi, H
来源期刊GEOCARTO INTERNATIONAL
ISSN1010-6049
EISSN1752-0762
出版年2022
卷号37期号:27页码:17435-17464
英文摘要Gully erosion is a complex socio-environmental issue that has a negative influence on natural resources and has significant economic costs. This study examined the performance of two ensemble models based on multicriteria decision making (MCDM) analysis, analytic hierarchy process (AHP), weight of evidence (WoE) and random forest (RF) for spatiotemporal monitoring of gully erosion sensitivity (GES) from 1988 to 2019 as well as a projection for 2040 in a semi-arid area. The findings revealed that the vulnerable areas significantly raise between 1988 and 2040 (> 27% of the study area since 2019), in perfect alignment with a rapid deterioration of the vegetation cover (-16%), a general decrease in rainfall (-25% since 2019), and an increase in land surface temperature (LST) average (30 degrees-37 degrees approximatively). Finally, the area under curve (AUC) value revealed a high prediction performance for both developed models (AUC = 0.888 for WoE-RF and 0.886 for MCDM-WoE-AHP).
英文关键词Ensemble of models analytical hierarchy process WoE random forest climate change
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000870187000001
WOS关键词LANDSLIDE SUSCEPTIBILITY ; SOIL-EROSION ; DECISION-MAKING ; SEDIMENT YIELD ; HIGH-ATLAS ; VALIDATION ; IMPACTS ; REGION
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392901
推荐引用方式
GB/T 7714
Eloudi, Hasna,Reddad, Hanane,Hssaisoune, Mohammed,et al. Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context[J],2022,37(27):17435-17464.
APA Eloudi, Hasna.,Reddad, Hanane.,Hssaisoune, Mohammed.,Estrany, Joan.,Krimissa, Samira.,...&Bouchaou, Lhoussaine.(2022).Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context.GEOCARTO INTERNATIONAL,37(27),17435-17464.
MLA Eloudi, Hasna,et al."Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context".GEOCARTO INTERNATIONAL 37.27(2022):17435-17464.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Eloudi, Hasna]的文章
[Reddad, Hanane]的文章
[Hssaisoune, Mohammed]的文章
百度学术
百度学术中相似的文章
[Eloudi, Hasna]的文章
[Reddad, Hanane]的文章
[Hssaisoune, Mohammed]的文章
必应学术
必应学术中相似的文章
[Eloudi, Hasna]的文章
[Reddad, Hanane]的文章
[Hssaisoune, Mohammed]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。