Arid
DOI10.1080/10106049.2022.2043452
Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine
Dolatkordestani, Mojtaba; Nosrati, Kazem; Maddah, Saeid; Tiefenbacher, John P.
通讯作者Dolatkordestani, M
来源期刊GEOCARTO INTERNATIONAL
ISSN1010-6049
EISSN1752-0762
出版年2022
卷号37期号:25页码:10950-10969
英文摘要The drying of wetlands in Iran due to climate change and indiscriminate human activities has increased dust production. Dust storms have become a major problem in arid and semi-arid regions and cause adverse social, economic, and environmental effects. The Jazmurian wetland in Kerman Province is one such area. To identify dust sources in the Jazmurian basin, high resolution Sentinel 2 data were used. From these, sediment supply was mapped. Three artificially intelligent algorithms-artificial neural network (ANN), support vector machine (SVM), and deep-learning neural network (DLNN)-were used to model dust-production potential in the study area. The results show that portions of the Jazmurian basin that have dried up in recent years have a very high potential for dust production. Evaluation of the models' performances using area-under-curve (AUC) statistics revealed that the DLNN model is more efficient (AUC = 0.97) than either the ANN (AUC = 0.91) or SVM (AUC = 0.92). All three models reveal that NDVI, elevation, annual rainfall, and windspeed are the four most important factors influencing dust-production potential in the study area. This remote sensing-artificial intelligence framework should be tested for mapping dust-production potential in other regions as this study demonstrates highly accurate, high-resolution results. This study yielded fundamental information to identify locations in need of desertification management and mitigation of dust production in the Jazmurian basin.
英文关键词Deep-learning neural network Jazmurian basin dust-source Sentinel 2 desertification
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000801101500001
WOS关键词STORM SOURCE AREAS ; MINERAL DUST ; EMISSION ; CLIMATE ; INDEX
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392891
推荐引用方式
GB/T 7714
Dolatkordestani, Mojtaba,Nosrati, Kazem,Maddah, Saeid,et al. Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine[J],2022,37(25):10950-10969.
APA Dolatkordestani, Mojtaba,Nosrati, Kazem,Maddah, Saeid,&Tiefenbacher, John P..(2022).Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine.GEOCARTO INTERNATIONAL,37(25),10950-10969.
MLA Dolatkordestani, Mojtaba,et al."Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine".GEOCARTO INTERNATIONAL 37.25(2022):10950-10969.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dolatkordestani, Mojtaba]的文章
[Nosrati, Kazem]的文章
[Maddah, Saeid]的文章
百度学术
百度学术中相似的文章
[Dolatkordestani, Mojtaba]的文章
[Nosrati, Kazem]的文章
[Maddah, Saeid]的文章
必应学术
必应学术中相似的文章
[Dolatkordestani, Mojtaba]的文章
[Nosrati, Kazem]的文章
[Maddah, Saeid]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。