Arid
DOI10.1007/s11356-022-20837-3
Predicting daily soil temperature at multiple depths using hybrid machine learning models for a semi-arid region in Punjab, India
Malik, Anurag; Tikhamarine, Yazid; Sihag, Parveen; Shahid, Shamsuddin; Jamei, Mehdi; Karbasi, Masoud
通讯作者Malik, A
来源期刊ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
ISSN0944-1344
EISSN1614-7499
出版年2022
卷号29期号:47页码:71270-71289
英文摘要Prediction of soil temperature (ST) at multiple depths is important for maintaining the physical, chemical, and biological activities in soil for various scientific aspects. The present study was conducted in a semi-arid region of Punjab to predict the daily ST at 5-cm (ST5), 15-cm (ST15), and 30-cm (ST30) soil depths by employing the three-hybrid machine learning (ML) paradigms, i.e. support vector machine (SVM), multilayer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS) optimized with slime mould algorithm (SMA), particle swarm optimization (PSO), and spotted hyena optimizer (SHO) algorithms. Five scenarios with different input variables were constructed using daily meteorological parameters, and the optimal one was extracted by exploiting the GT (gamma test). The feasibility of the proposed hybrid SVM, MLP, and ANFIS models was inspected based on performance metrics and visual interpretation. According to the results, the SVMSMA model yields better estimates than other models at 5-cm, 15-cm, and 30-cm soil depths, respectively, for scenario 5 in the validation phase. Furthermore, conferring to the results, the SMA algorithm-based SVM model had lower (higher) values of mean absolute error, root mean square error, and index of scattering (Nash-Sutcliffe efficiency, coefficient of correlation, and Willmott index of agreement) and proved the better feasibility of SVM models in predicting daily ST at multiple depths on the study site.
英文关键词Soil temperature Climatic parameters Gamma test Machine learning techniques Punjab
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000798404700010
WOS关键词PAN-EVAPORATION ESTIMATION ; OPTIMIZATION ALGORITHM ; SOLAR-RADIATION ; NEURAL-NETWORKS ; GAMMA-TEST ; PERFORMANCE ; ANFIS ; SVM
WOS类目Environmental Sciences
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392527
推荐引用方式
GB/T 7714
Malik, Anurag,Tikhamarine, Yazid,Sihag, Parveen,et al. Predicting daily soil temperature at multiple depths using hybrid machine learning models for a semi-arid region in Punjab, India[J],2022,29(47):71270-71289.
APA Malik, Anurag,Tikhamarine, Yazid,Sihag, Parveen,Shahid, Shamsuddin,Jamei, Mehdi,&Karbasi, Masoud.(2022).Predicting daily soil temperature at multiple depths using hybrid machine learning models for a semi-arid region in Punjab, India.ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH,29(47),71270-71289.
MLA Malik, Anurag,et al."Predicting daily soil temperature at multiple depths using hybrid machine learning models for a semi-arid region in Punjab, India".ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 29.47(2022):71270-71289.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Malik, Anurag]的文章
[Tikhamarine, Yazid]的文章
[Sihag, Parveen]的文章
百度学术
百度学术中相似的文章
[Malik, Anurag]的文章
[Tikhamarine, Yazid]的文章
[Sihag, Parveen]的文章
必应学术
必应学术中相似的文章
[Malik, Anurag]的文章
[Tikhamarine, Yazid]的文章
[Sihag, Parveen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。