Arid
DOI10.1016/j.envsoft.2022.105492
Post-processing R tool for SWAT efficiently studying climate change impacts on hydrology, water quality, and crop growth
Ding, Beibei; Liu, Haipeng; Li, Yingxuan; Zhang, Xueliang; Feng, Puyu; Liu, De Li; Marek, Gary W.; Ale, Srinivasulu; Brauer, David K.; Srinivasan, Raghavan; Chen, Yong
通讯作者Chen, Y
来源期刊ENVIRONMENTAL MODELLING & SOFTWARE
ISSN1364-8152
EISSN1873-6726
出版年2022
卷号156
英文摘要Soil and Water Assessment Tool (SWAT) is widely used for watershed-scale assessment of climate change im-pacts, but post-processing of model outputs is a tedious job. An R tool was developed in this study for batch processing of SWAT output results. A case study was then performed in the Double Mountain Fork Brazos watershed in the Texas Panhandle using an improved SWAT model with the R tool to evaluate the simulated future changes in water balance components, total nitrogen (TN) load, and crop growth over the watershed. The results showed that the average annual future surface runoff increased by 8.9-17.9 mm and 11.5-22.6 mm in the irrigated and dryland cotton areas, respectively. Similarly, future TN load in irrigated and dryland cotton areas increased by approximately 0.4-0.9 kg ha(-1) and 1.9-2.4 kg ha(-1). The yields of irrigated and dryland cotton increased by 91.1%-122.1% and 47.5%-84.0% under the future climate scenarios, respectively.
英文关键词SWAT -MAD CMIP6 Hydrologic cycle Total nitrogen load Cotton Semi -arid region
类型Article
语种英语
开放获取类型Bronze
收录类别SCI-E
WOS记录号WOS:000860212300002
WOS关键词GREENHOUSE-GAS CONCENTRATIONS ; TEXAS HIGH-PLAINS ; MODELS ; COTTON ; EVAPOTRANSPIRATION ; AVAILABILITY ; IRRIGATION ; YIELD ; CMIP5
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Environmental ; Environmental Sciences ; Water Resources
WOS研究方向Computer Science ; Engineering ; Environmental Sciences & Ecology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392466
推荐引用方式
GB/T 7714
Ding, Beibei,Liu, Haipeng,Li, Yingxuan,et al. Post-processing R tool for SWAT efficiently studying climate change impacts on hydrology, water quality, and crop growth[J],2022,156.
APA Ding, Beibei.,Liu, Haipeng.,Li, Yingxuan.,Zhang, Xueliang.,Feng, Puyu.,...&Chen, Yong.(2022).Post-processing R tool for SWAT efficiently studying climate change impacts on hydrology, water quality, and crop growth.ENVIRONMENTAL MODELLING & SOFTWARE,156.
MLA Ding, Beibei,et al."Post-processing R tool for SWAT efficiently studying climate change impacts on hydrology, water quality, and crop growth".ENVIRONMENTAL MODELLING & SOFTWARE 156(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ding, Beibei]的文章
[Liu, Haipeng]的文章
[Li, Yingxuan]的文章
百度学术
百度学术中相似的文章
[Ding, Beibei]的文章
[Liu, Haipeng]的文章
[Li, Yingxuan]的文章
必应学术
必应学术中相似的文章
[Ding, Beibei]的文章
[Liu, Haipeng]的文章
[Li, Yingxuan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。