Arid
DOI10.1016/j.egyr.2022.10.402
Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions
Djaafari, Abdallah; Ibrahim, Abdelhameed; Bailek, Nadjem; Bouchouicha, Kada; Hassan, Muhammed A.; Kuriqi, Alban; Al-Ansar, Nadhir; El-Kenawy, El-Sayed M.
通讯作者Bailek, N
来源期刊ENERGY REPORTS
ISSN2352-4847
出版年2022
卷号8页码:15548-15562
英文摘要Although solar energy harnessing capacity varies considerably based on the employed solar energy technology and the meteorological conditions, accurate direct normal irradiation (DNI) prediction remains crucial for better planning and management of concentrating solar power systems. This work develops hybrid Long Short-Term Memory (LSTM) models for assessing hourly DNI using meteorological datasets that include relative humidity, air temperature, and global solar irradiation. The study proposes a unique hybrid model, combining a balance-dynamic sine-cosine (BDSCA) algorithm with an LSTM predictor. Combining optimizers and predictors, such hybrid models are rarely developed to estimate DNI, especially in smaller prediction intervals. Therefore, various commonly adopted algorithms in relevant studies have been considered references for evaluating the new hybrid algorithm. The results show that the relative errors of the proposed models do not exceed 2.07%, with a minimum correlation coefficient of 0.99. In addition, the dimensionality of inputs was reduced from four variables to the two most cost-effective variables in DNI prediction. Therefore, these suggested models are reliable for estimating DNI in the arid desert areas of Algeria and other locations with similar climatic features. (C) 2022 The Authors. Published by Elsevier Ltd.
英文关键词Solar energy Direct normal irradiation Concentrating solar power operation Algerian big south Extremal optimization Long Short-Term Memory
类型Article
语种英语
开放获取类型gold, Green Submitted
收录类别SCI-E
WOS记录号WOS:000892862100002
WOS关键词PERFORMANCE ANALYSIS ; AIR-TEMPERATURE ; RADIATION ; ENERGY ; OPTIMIZATION ; METHODOLOGY ; GENERATION
WOS类目Energy & Fuels
WOS研究方向Energy & Fuels
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392427
推荐引用方式
GB/T 7714
Djaafari, Abdallah,Ibrahim, Abdelhameed,Bailek, Nadjem,et al. Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions[J],2022,8:15548-15562.
APA Djaafari, Abdallah.,Ibrahim, Abdelhameed.,Bailek, Nadjem.,Bouchouicha, Kada.,Hassan, Muhammed A..,...&El-Kenawy, El-Sayed M..(2022).Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions.ENERGY REPORTS,8,15548-15562.
MLA Djaafari, Abdallah,et al."Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions".ENERGY REPORTS 8(2022):15548-15562.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Djaafari, Abdallah]的文章
[Ibrahim, Abdelhameed]的文章
[Bailek, Nadjem]的文章
百度学术
百度学术中相似的文章
[Djaafari, Abdallah]的文章
[Ibrahim, Abdelhameed]的文章
[Bailek, Nadjem]的文章
必应学术
必应学术中相似的文章
[Djaafari, Abdallah]的文章
[Ibrahim, Abdelhameed]的文章
[Bailek, Nadjem]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。