Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1002/ece3.9612 |
Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific | |
Brunner, Otis; Chen, Chong; Giguere, Thomas; Kawagucci, Shinsuke; Tunnicliffe, Verena; Watanabe, Hiromi Kayama; Mitarai, Satoshi | |
通讯作者 | Brunner, O |
来源期刊 | ECOLOGY AND EVOLUTION
![]() |
ISSN | 2045-7758 |
出版年 | 2022 |
卷号 | 12期号:12 |
英文摘要 | The distribution of species among spatially isolated habitat patches supports regional biodiversity and stability, so understanding the underlying processes and structure is a key target of conservation. Although multivariate statistics can infer the connectivity processes driving species distribution, such as dispersal and habitat suitability, they rarely explore the structure. Methods from graph theory, applied to distribution data, give insights into both connectivity pathways and processes by intuitively formatting the data as a network of habitat patches. We apply these methods to empirical data from the hydrothermal vent habitats of the Northwest Pacific. Hydrothermal vents are oases of biological productivity and endemicity on the seafloor that are imminently threatened by anthropogenic disturbances with unknown consequences to biodiversity. Here, we describe the structure of species assemblage networks at hydrothermal vents, how local and regional parameters affect their structure, and the implications for conservation. Two complementary networks were formed from an extensive species assemblage dataset: a similarity network of vent site nodes linked by weighted edges based on their pairwise assemblage similarity and a bipartite network of species nodes linked to vent site nodes at which they are present. Using these networks, we assessed the role of individual vent sites in maintaining network connectivity and identified biogeographic sub-regions. The three sub-regions and two outlying sites are separated by their spatial arrangement and local environmental filters. Both networks detected vent sites that play a disproportionately important role in regional pathways, while the bipartite network also identified key vent sites maintaining the distinct species assemblages of their sub-regions. These regional connectivity pathways provide insights into historical colonization routes, while sub-regional connectivity pathways are of value when selecting sites for conservation and/or estimating the multivent impacts from proposed deep-sea mining. |
英文关键词 | biogeography connectivity hydrothermal vent metacommunity network |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published, gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000901819700001 |
WOS关键词 | BIOGEOGRAPHICAL MODULES ; SMALL-WORLD ; SEA ; ISLAND ; CONSERVATION ; DISPERSAL ; CONSEQUENCES ; BIODIVERSITY ; ARCHIPELAGO ; ECOSYSTEMS |
WOS类目 | Ecology ; Evolutionary Biology |
WOS研究方向 | Environmental Sciences & Ecology ; Evolutionary Biology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/392384 |
推荐引用方式 GB/T 7714 | Brunner, Otis,Chen, Chong,Giguere, Thomas,et al. Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific[J],2022,12(12). |
APA | Brunner, Otis.,Chen, Chong.,Giguere, Thomas.,Kawagucci, Shinsuke.,Tunnicliffe, Verena.,...&Mitarai, Satoshi.(2022).Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific.ECOLOGY AND EVOLUTION,12(12). |
MLA | Brunner, Otis,et al."Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific".ECOLOGY AND EVOLUTION 12.12(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。