Arid
DOI10.5004/dwt.2022.28960
Productivity modelling of an inclined stepped solar still for seawater desalination using boosting algorithms based on experimental data
Wazirali, Raniyah; Abujazar, Mohammed Shadi S.; Abujayyab, Sohaib K. M.; Ahmad, Rami; Fatihah, Suja; Kabeel, A. E.; Karaagac, Sakine Ugurlu; Abu Amr, Salem S.; Alazaiza, Motasem Y. D.; Bashir, Mohammed J. K.; Sokar, Ibrahim Y.
通讯作者Abujazar, MSS
来源期刊DESALINATION AND WATER TREATMENT
ISSN1944-3994
EISSN1944-3986
出版年2022
卷号276页码:28-39
英文摘要Solar energy has recently become a viable option for desalinating seawater, primarily in arid regions. However, increasing the productivity of solar still by integrating experimental base and modelling methods is still subject to prediction errors; therefore, the main objective of this research is to postulate and test boosting algorithms for predicting the efficiency and productivity of the system. Five boosting regressors were deployed and evaluated: categorical boosting, adaptive boosting, extreme gradient boosting, gradient boosting machine, and gradient boosting machine (LightGBM). The proposed regressors are implemented based on the system's actual recorded dataset (consisting of 720 observations). The dataset consists of input variables, which are the wind speed (V), cloud cover, humidity, ambient temperature (T), solar radiation (SR), (T-io), (T-w), (T-v), and (T-t). Also, the output variable is represented by the productivity of the system. The dataset was separated into training (70%) and testing (30%) sets. In order to decrease regressors errors, hyperparameter optimization was employed. GradientBoosting approach provided the best prediction, with 95% R-2 accuracy and 39.57 root mean square error (RMSE) error. The LightGBM technique achieved 94% R-2 accuracy and 40.07 RMSE error in the testing dataset. The results reveal that GradientBoosting outperforms the cascaded forward neural network in predicting system productivity (CFNN).
英文关键词Solar desalination Meteorological data Boosting algorithms Modelling Productivity evaluation
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000934038900003
WOS关键词ARTIFICIAL NEURAL-NETWORKS ; PERFORMANCE EVALUATION ; SINGLE ; ENERGY ; PARAMETERS ; SYSTEM ; OPTIMIZATION ; QUALITY ; EXERGY ; DESIGN
WOS类目Engineering, Chemical ; Water Resources
WOS研究方向Engineering ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392235
推荐引用方式
GB/T 7714
Wazirali, Raniyah,Abujazar, Mohammed Shadi S.,Abujayyab, Sohaib K. M.,et al. Productivity modelling of an inclined stepped solar still for seawater desalination using boosting algorithms based on experimental data[J],2022,276:28-39.
APA Wazirali, Raniyah.,Abujazar, Mohammed Shadi S..,Abujayyab, Sohaib K. M..,Ahmad, Rami.,Fatihah, Suja.,...&Sokar, Ibrahim Y..(2022).Productivity modelling of an inclined stepped solar still for seawater desalination using boosting algorithms based on experimental data.DESALINATION AND WATER TREATMENT,276,28-39.
MLA Wazirali, Raniyah,et al."Productivity modelling of an inclined stepped solar still for seawater desalination using boosting algorithms based on experimental data".DESALINATION AND WATER TREATMENT 276(2022):28-39.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wazirali, Raniyah]的文章
[Abujazar, Mohammed Shadi S.]的文章
[Abujayyab, Sohaib K. M.]的文章
百度学术
百度学术中相似的文章
[Wazirali, Raniyah]的文章
[Abujazar, Mohammed Shadi S.]的文章
[Abujayyab, Sohaib K. M.]的文章
必应学术
必应学术中相似的文章
[Wazirali, Raniyah]的文章
[Abujazar, Mohammed Shadi S.]的文章
[Abujayyab, Sohaib K. M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。