Arid
DOI10.1016/j.compbiomed.2022.105799
GraformerDIR: Graph convolution transformer for deformable image registration
Yang, Tiejun; Bai, Xinhao; Cui, Xiaojuan; Gong, Yuehong; Li, Lei
通讯作者Bai, XH
来源期刊COMPUTERS IN BIOLOGY AND MEDICINE
ISSN0010-4825
EISSN1879-0534
出版年2022
卷号147
英文摘要Purpose: Deformable image registration (DIR) plays an important role in assisting disease diagnosis. The emergence of the Transformer enables the DIR framework to extract long-range dependencies, which relieves the limitations of intrinsic locality caused by convolution operation. However, suffering from the interference of missing or spurious connections, it is a challenging task for Transformer-based methods to capture the highquality long-range dependencies.Methods: In this paper, by staking the graph convolution Transformer (Graformer) layer at the bottom of the feature extraction network, we propose a Graformer-based DIR framework, named GraformerDIR. The Graformer layer is consist of the Graformer module and the Cheby-shev graph convolution module. Among them, the Graformer module is designed to capture high-quality long-range dependencies. Cheby-shev graph convolution module is employed to further enlarge the receptive field.Results: The performance and generalizability of GraformerDIR have been evaluated on publicly available brain datasets including the OASIS, LPBA40, and MGH10 datasets. Compared with VoxelMorph, the GraformerDIR has obtained performance improvements of 4.6% in Dice similarity coefficient (DSC) and 0.055 mm in the average symmetric surface distance (ASD) while reducing the non-positive rate of Jacobin determinant (Npr.Jac) index about 60 times on publicly available OASIS dataset. On unseen dataset MGH10, the GraformerDIR has obtained the performance improvements of 4.1% in DSC and 0.084 mm in ASD compared with VoxelMorph, which demonstrates the GraformerDIR with better generalizability. The promising performance on the clinical cardiac dataset ACDC indicates the GraformerDIR is practicable.Conclusion: With the advantage of Transformer and graph convolution, the GraformerDIR has obtained comparable performance with the state-of-the-art method VoxelMorph.
英文关键词Deformable image registration Graph convolution Transformer Long-range dependencies
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000827553000004
WOS关键词LEARNING FRAMEWORK
WOS类目Biology ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Mathematical & Computational Biology
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Computer Science ; Engineering ; Mathematical & Computational Biology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392188
推荐引用方式
GB/T 7714
Yang, Tiejun,Bai, Xinhao,Cui, Xiaojuan,et al. GraformerDIR: Graph convolution transformer for deformable image registration[J],2022,147.
APA Yang, Tiejun,Bai, Xinhao,Cui, Xiaojuan,Gong, Yuehong,&Li, Lei.(2022).GraformerDIR: Graph convolution transformer for deformable image registration.COMPUTERS IN BIOLOGY AND MEDICINE,147.
MLA Yang, Tiejun,et al."GraformerDIR: Graph convolution transformer for deformable image registration".COMPUTERS IN BIOLOGY AND MEDICINE 147(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Tiejun]的文章
[Bai, Xinhao]的文章
[Cui, Xiaojuan]的文章
百度学术
百度学术中相似的文章
[Yang, Tiejun]的文章
[Bai, Xinhao]的文章
[Cui, Xiaojuan]的文章
必应学术
必应学术中相似的文章
[Yang, Tiejun]的文章
[Bai, Xinhao]的文章
[Cui, Xiaojuan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。