Arid
DOI10.1016/j.compag.2022.107482
How does a combination of numerical modeling, clustering, artificial intelligence, and evolutionary algorithms perform to predict regional groundwater levels?
Kayhomayoon, Zahra; Ghordoyee-Milan, Sami; Jaafari, Abolfazl; Arya-Azar, Naser; Melesse, Assefa M.; Moghaddam, Hamid Kardan
通讯作者Kayhomayoon, Z
来源期刊COMPUTERS AND ELECTRONICS IN AGRICULTURE
ISSN0168-1699
EISSN1872-7107
出版年2022
卷号203
英文摘要The prediction of groundwater levels in arid and semi-arid regions is of great importance to tailor the best water management strategies. In this study, we propose a new approach that combines simulation, clustering, and optimization tools for groundwater level prediction. This approach simulates groundwater levels (GWL) using the MODFLOW method, clusters the study aquifer into different clusters using the k-mean method, and predicts regional GWL using the artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) methods that were optimized by the Harris Hawks Optimization (HHO), Whale Optimization Algorithm (WOA), and Particle Swarm Optimization (PSO). The efficacy of our approach was evaluated via a case study in northwest Iran. The MODFLOW method simulated the distribution of GWL across the study area with R-2 = 0.99, root mean square error (RMSE) = 0.97 m (m) and mean absolute error (MAE) = 0.82 m. The k-means method clustered the aquifer into seven clusters based on the hydraulic conductivity, storage coefficient, groundwater level, groundwater depth, groundwater withdrawal, and aquifer saturation thickness parameters. The prediction of groundwater level for each cluster demonstrated the accurate performance of all optimized models with mean RMSE = 0.6 m and mean absolute percentage error (MAPE) = 0.23 m. The prediction phase identified groundwater level in the previous month (obtained from the MODFLOW method), withdrawal of aquifer, pre-cipitation, temperature, and evaporation as the most influential variables for groundwater levels in different clusters. We recommend the methodology proposed here for the prediction of groundwater levels in different aquifers with heterogeneous characteristics that pose computational burdens and uncertainties.
英文关键词Artificial intelligence models Evolutionary algorithms Groundwater level Groundwater stability Spatial clustering
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000900087200005
WOS关键词NEURAL-NETWORK ; FLUCTUATIONS ; SIMULATION ; ANFIS
WOS类目Agriculture, Multidisciplinary ; Computer Science, Interdisciplinary Applications
WOS研究方向Agriculture ; Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392186
推荐引用方式
GB/T 7714
Kayhomayoon, Zahra,Ghordoyee-Milan, Sami,Jaafari, Abolfazl,et al. How does a combination of numerical modeling, clustering, artificial intelligence, and evolutionary algorithms perform to predict regional groundwater levels?[J],2022,203.
APA Kayhomayoon, Zahra,Ghordoyee-Milan, Sami,Jaafari, Abolfazl,Arya-Azar, Naser,Melesse, Assefa M.,&Moghaddam, Hamid Kardan.(2022).How does a combination of numerical modeling, clustering, artificial intelligence, and evolutionary algorithms perform to predict regional groundwater levels?.COMPUTERS AND ELECTRONICS IN AGRICULTURE,203.
MLA Kayhomayoon, Zahra,et al."How does a combination of numerical modeling, clustering, artificial intelligence, and evolutionary algorithms perform to predict regional groundwater levels?".COMPUTERS AND ELECTRONICS IN AGRICULTURE 203(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kayhomayoon, Zahra]的文章
[Ghordoyee-Milan, Sami]的文章
[Jaafari, Abolfazl]的文章
百度学术
百度学术中相似的文章
[Kayhomayoon, Zahra]的文章
[Ghordoyee-Milan, Sami]的文章
[Jaafari, Abolfazl]的文章
必应学术
必应学术中相似的文章
[Kayhomayoon, Zahra]的文章
[Ghordoyee-Milan, Sami]的文章
[Jaafari, Abolfazl]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。