Arid
DOI10.1016/j.catena.2022.106485
Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies
Das, Bappa; Rathore, Pooja; Roy, Debasish; Chakraborty, Debashis; Jatav, Raghuveer Singh; Sethi, Deepak; Kumar, Praveen
通讯作者Chakraborty, D
来源期刊CATENA
ISSN0341-8162
EISSN1872-6887
出版年2022
卷号217
英文摘要Soil moisture information is key to irrigation water management, drought monitoring, and yield prediction. It plays a vital role in the water cycle and energy budget between the earth's surface and atmosphere. Hence, its monitoring is crucial for both natural and anthropogenic environments. While the current remote sensing-based global SM products available at coarser resolution (3/15 km) are unsuitable for field-level operations, the most widely used microwave remote sensing suffers from model complexities and in-situ data requirements. Weather conditions limit the alternate approaches such as optical/thermal. This study aims to map surface soil moisture (SSM) at 30 m spatial resolution in a semi-arid region by fusing optical, thermal, and microwave remote sensing data using bagging, boosting, and stacking machine learning approaches. The reference data were collected using a soil moisture meter. The covariates included radar backscatter from Sentinel-1, visible, near-infrared, shortwave infrared, land surface temperature, and spectral indices derived from Landsat 8. Boruta algorithm was used for feature selection which identified radar backscatter, modified normalized difference water index, and land surface temperature as the most critical covariates impacting the SSM. The random forest (RF) showed the highest correlation coefficient (r = 0.71), and least root mean square error (RMSE = 5.17%). The cubist model had the least mean bias error (MBE = 0.21%) during independent validation. Stacking of cubist, gradient boosting machine (GBM), and RF using elastic net (ELNET) as meta-learner further reduced the MBE (0.18%) and RMSE (5.03%) during the validation. Overall, stacking multiple machine learning models improved model prediction and can be recommended to improve the digital soil moisture mapping.
英文关键词Machine learning Stacking Soil moisture Sentinel-1 Landsat-8
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000822972200004
WOS关键词LANDSAT ; WATER ; RETRIEVAL ; SENTINEL-1 ; RESOLUTION ; MODELS ; REGION ; FOREST ; INDEX ; AREA
WOS类目Geosciences, Multidisciplinary ; Soil Science ; Water Resources
WOS研究方向Geology ; Agriculture ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/392114
推荐引用方式
GB/T 7714
Das, Bappa,Rathore, Pooja,Roy, Debasish,et al. Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies[J],2022,217.
APA Das, Bappa.,Rathore, Pooja.,Roy, Debasish.,Chakraborty, Debashis.,Jatav, Raghuveer Singh.,...&Kumar, Praveen.(2022).Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies.CATENA,217.
MLA Das, Bappa,et al."Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies".CATENA 217(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Das, Bappa]的文章
[Rathore, Pooja]的文章
[Roy, Debasish]的文章
百度学术
百度学术中相似的文章
[Das, Bappa]的文章
[Rathore, Pooja]的文章
[Roy, Debasish]的文章
必应学术
必应学术中相似的文章
[Das, Bappa]的文章
[Rathore, Pooja]的文章
[Roy, Debasish]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。