Arid
DOI10.3390/atmos13091436
Tuning ANN Hyperparameters by CPSOCGSA, MPA, and SMA for Short-Term SPI Drought Forecasting
Alawsi, Mustafa A.; Zubaidi, Salah L.; Al-Ansari, Nadhir; Al-Bugharbee, Hussein; Ridha, Hussein Mohammed
通讯作者Al-Ansari, N
来源期刊ATMOSPHERE
EISSN2073-4433
出版年2022
卷号13期号:9
英文摘要Modelling drought is vital to water resources management, particularly in arid areas, to reduce its effects. Drought severity and frequency are significantly influenced by climate change. In this study, a novel hybrid methodology was built, data preprocessing and artificial neural network (ANN) combined with the constriction coefficient-based particle swarm optimisation and chaotic gravitational search algorithm (CPSOCGSA), to forecast standard precipitation index (SPI) based on climatic factors. Additionally, the marine predators algorithm (MPA) and the slime mould algorithm (SMA) were used to validate the performance of the CPSOCGSA algorithm. Climatic factors data from 1990 to 2020 were employed to create and evaluate the SPI 1, SPI 3, and SPI 6 models for Al-Kut City, Iraq. The results indicated that data preprocessing methods improve data quality and find the best predictors scenario. The performance of CPSOCGSA-ANN is better than MPA-ANN and SMA-ANN algorithms based on various statistical criteria (i.e., R-2, MAE, and RMSE). The proposed methodology yield R-2 = 0.93, 0.93, and 0.88 for SPI 1, SPI 3, and SPI 6, respectively.
英文关键词drought forecast model metaheuristic algorithms artificial neural network standardised precipitation index Iraq
类型Article
语种英语
开放获取类型Green Submitted, gold
收录类别SCI-E
WOS记录号WOS:000858114300001
WOS关键词SINGULAR SPECTRUM ANALYSIS ; MARINE PREDATORS ALGORITHM ; ARTIFICIAL NEURAL-NETWORKS ; URBAN WATER DEMAND ; AWASH RIVER-BASIN ; TIME-SERIES ; PREDICTION ; PRECIPITATION ; RAINFALL ; MODELS
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/391923
推荐引用方式
GB/T 7714
Alawsi, Mustafa A.,Zubaidi, Salah L.,Al-Ansari, Nadhir,et al. Tuning ANN Hyperparameters by CPSOCGSA, MPA, and SMA for Short-Term SPI Drought Forecasting[J],2022,13(9).
APA Alawsi, Mustafa A.,Zubaidi, Salah L.,Al-Ansari, Nadhir,Al-Bugharbee, Hussein,&Ridha, Hussein Mohammed.(2022).Tuning ANN Hyperparameters by CPSOCGSA, MPA, and SMA for Short-Term SPI Drought Forecasting.ATMOSPHERE,13(9).
MLA Alawsi, Mustafa A.,et al."Tuning ANN Hyperparameters by CPSOCGSA, MPA, and SMA for Short-Term SPI Drought Forecasting".ATMOSPHERE 13.9(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alawsi, Mustafa A.]的文章
[Zubaidi, Salah L.]的文章
[Al-Ansari, Nadhir]的文章
百度学术
百度学术中相似的文章
[Alawsi, Mustafa A.]的文章
[Zubaidi, Salah L.]的文章
[Al-Ansari, Nadhir]的文章
必应学术
必应学术中相似的文章
[Alawsi, Mustafa A.]的文章
[Zubaidi, Salah L.]的文章
[Al-Ansari, Nadhir]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。